CUENCAS DE CLAROMECO, LABOULAYE, ROSARIO, LINCOLN, UMBRAL DE TRENQUE LAUQUEN

DEFORMACION DEL NORTE DE PARAGONIA

Las descripciones de los escasos afloramientos de areniscas, algunas con restos de flora fósil neopaleozoicas, hallados en la región interserrana sugirieron la posible existencia de una cuenca paleozoica entre las provincias geológicas de Tandilia y Ventania.

Los primeros datos que indicaron la existencia de una cuenca interserrana de gran desarrollo areal fueron aportados por el estudio geofísico de Kostadinoff y Font (1982). Estos autores reconocieron una anomalía gravimétrica de Bouguer fuertemente negativa en el sector interserrano comprendido entre las sierras de Tandilia y Ventania.

Dicha anomalía se halla alineada con el arroyo Claromecó y fue interpretada como un eje de máxima subsidencia de una cuenca paleozoica de 8 km de espesor. Introcaso (1982) calculó que el conjunto sedimentario podría llegar a un espesor de 10,5 km.

Los relevamientos gravimétricos de Kostadinoff (1993) permitieron establecer que esta cuenca en el sector continental abarca unos 40.000 km2 y que el relleno sedimentario se acuña rápidamente hacia el este. Los trabajos de sísmica de refracción realizados en los alrededores de las localidades de Claromecó y Gonzáles Chaves (Kostadinoff y Prozzi 1998) mostraron la presencia de reflectores hasta los 5,8 segundos.

Considerando la alta velocidad sísmica de los sedimentos paleozoicos (entre 4500 m/s a 5800 m/s) se confirmó que el espesor de sedimentos es mayor de 12 km en el sector central de la cuenca. Ramos y Kostadinoff (2005) propusieron que la evolución de esta cuenca se extendería desde el Cámbrico hasta el Pérmico. Las compañías petroleras Bridas SAPIC y su sucesora Barranca Sur SA., luego de una intensa actividad de exploración geofísica, con levantamientos sísmicos de reflexión, gravimetría, magnetometría y geoquímica, decidieron la perforación de cuatro pozos profundos: Paragüil X-1, San Cayetano X-1, General La Madrid X-1 y San Mayol X-1 permitiendo resolver la estratigrafía del sector central de esta cuenca (Lesta y Sylwan 2005).

De esta manera el diseño de las cuencas paleozoicas de la provincia de Buenos Aires es el siguiente:

En amarillo, cuencas Jurásico-Cretácico.

Tomado de GREGORI, ROBLES, KOSTADINOFF, ALVAREZ, RANIOLO, BARROS y STRAZZERE, 2009. LAS CUENCAS DEL EXTREMO NOROESTE DE LA PROVINCIA DE BUENOS AIRES. Revista de la Asociación Geológica Argentina 64 (4 ): 586 - 593

CUENCA DE CLAROMECO

Se extiende desde el Alto de Rivera-Darragueira-Bahía Blanca hasta la zona de Tandilia, según el siguente esquema

De la Cuenca de Claromecó, solo hay afloramientos importantes en Sierra de la Ventana

La columna tipo del Grupo Pillahuinco es la siguiente

La deformación del Famatiniano debido a la Fase Diatrofica Chánica es la siguiente:

Corte Co guardian-Abra de la Ventan.gif (52790 bytes)

 

 

Las columnas estratigraficas propuestas son las siguentes

Edad

Kilmurray (1975)

Oeste                 Este

Harrington (1947-1977)

Varela (1978)

Oeste     Centro             Este

Buggish (1987)

 Pérmico

Tunas

Bonete

Piedra Azul

Sauce Grande

Tunas

Bonete

 Piedra Azul

 Sauce Grande

Hinojo

Trocadero

Mascota

 La Lola

Tunas

Bonete

 Piedra Azul

Sauce Grande

Tunas

Bonete

Piedra Azul

 Sauce Grande

Carbónico

superior

Carbónico

 

inferior

Providencia

Napostá

Bravard

Hinojo

Trocadero

Mascota

La Lola

Riolita La Ermita

 

 

 Riolita

La Ermita

   

Apuntes sobre el Grupo Pillahuincó y la deformación Gondwánica

Corte López Lecube-Co. Bonete (Schiler, 1930)

Corte NW-SE Co. Tres Picos 

 

BIBLIOGRAFIA SOBRE UNIDADES GONDWANICAS DE SIERRA DE LA VENTANA

Buggisch, W., 1987. Stratigraphy and very low grade metamorphism of the Sierras Australes de la Provincia de Buenos Aires (Argentina) and implications in Gondwana correlation. Zentralblat fur Geologie und Palaontologie., I: 819-837.

Keidel, J., 1916. La geología de las sierras de la Provincia de Buenos Aires y sus relaciones con las montañas de Cabo y los Andes. Anales Dirección Nacional de Geología y Minería, IX (3): 5-77. Buenos Aires.

López-Gamundi, O. R., Conaghan, P. J., Rosello, E. A. and Cobbold, P. R., 1994. The Tunas Formation in the Sierras Australes Fold Belt. Journal of South American Earth Sciences, 8: 129-142.

Rossello, E.A., Massabie, A. C., Lòpez Gamundì, O.R., Cobbold, P.R. and Gapais, D., 1997. Late Paleozoic trnaspression in Buenos Aires and northeast Patagonia ranges, Argentina, Journ. South American Earth Sci, 10: 389-402.

Sellés Martínez, J., 1989. The structure of the Sierras Australes (Buenos Aires province, Argentina): An example of holding in a transpressive environment, Journal South American Earth Sciences. 2: 317-329.

Tomezzoli, R. N. and Vilas, J. F., 1996. Paleomagnetismo del Grupo Pillahuincó en Sierra de la Ventana (estancias Las Julianas y San Carlos). XIII Congreso Geológico Argentino. III Congreso de Exploración de Hidrocarburos. Buenos Aires. Actas II: 481-488.

Tomezzoli, R. N. y Cristallini, E. O., 2004. Secciones estructurales de Las Sierras Australes de la provincia de Buenos Aires: Repetición de la secuencia estratigráfica a partir de fallas inversas? Revista de la Asociación Geológica Argentina, 59 (2): 330-340.

von Gosen, W, Buggisch, W. and Dimieri, L., 1990. Structural and metamorphic evolution of Sierras Australes (Buenos Aires Province, Argentina). Geologische Rundschau 79/3: 797-821. Stuttgart.

 

UMBRAL DE TRENQUE LAUQUEN

Comunica la Cuenca de Claromecó con las del norte de la Provincia de Buenos Aires

Mapa de anomalías de gravedad

Mapa de anomalías de magnetismo

Al norte de las lagunas de Epecuén, del Venado, del Monte, Cochicó y Alsina, a lo largo del denominado lineamiento de Vallimanca, se visualiza un umbral de anomalías gravimétricas de Bouguer con rumbo norte. El mismo pasa aproximadamente entre los 62º30´ y 63º 15´W por las localidades de Guaminí, Salliqueló, Tres Lomas, Trenque Lauquen y Sundblad. Al norte de la línea Trenque Lauquen - La Zanja se halla una zona donde se invierte la pendiente (gradiente) de las anomalías gravimétricas de Bouguer. Hacia el sur, esta pendiente se dirige hacia la cuenca de Claromecó y al norte hacia la cuenca Chacoparanense. El umbral, que denominaremos de Trenque Lauquen, se ubica entre Guaminí y G. Moreno formando en un corredor de anomalías gravimétricas negativas de Bouguer de más de 160 km de extensión y su ancho promedio es de 75 km.

Los espesores de sedimentos paleozoicos en este sector son similares a los hallados en los pozos perforados en la cuenca de Claromecó. Un modelado con cuerpos prismáticos, considerando la interpretación anterior, indicaría en el caso del mínimo del perfil Salliqueló, un espesor de los sedimentos terciarios es de 200 metros y el de los paleozoicos es de 4.000 metros. De acuerdo a un bosquejo geológico presentado por Yrigoyen (1975), en dos pozos perforados en cercanías del área investigada (Larramendi y Santa Aurelia), se observó la existencia de sedimentos paleozoicos. Considerando lo anteriormente expuesto se propone que estos mínimos gravimétricos son la expresión de la suma de espesores de sedimentos mesozoicos y paleozoicos. Los trabajos de De Elorriaga y Tullio (1998) indicaron en Villa Sauze, de acuerdo a los resultados de una perforación realizada por la DNGM, la existencia de una dolomita de edad silúrica.

La zona de Trenque Lauquen tiene un máximo de gravedad coincidente con un mínimo de magnetismo. Este hecho puede ser atribuido a que el basamento podría corresponder a granitoides gneises, pegmatitas, etc del ciclo Pampeano.

En el sector de Tres Lomas - Salliqueló se visualiza que las anomalías de magnetismo siguen a las de gravedad. Esta signatura geofísica es típica del basamento de rocas de baja susceptibilidad magnética, posiblemente Pampeano.

Al este del umbral de Trenque Lauquen las anomalías magnéticas tienen mayor magnitud que las halladas al oeste. Esto indicaría, de acuerdo a las tablas publicadas por Kostadinoff (1995), la posible existencia de un basamento similar al de Tandilia. (Cratón del Río de La Plata).

Tomado de KOSTADINOFF, J., 2007. EVIDENCIA GEOFÍSICA DEL UMBRAL DE TRENQUE LAUQUEN EN LA EXTENSIÓN NORTE DE LA CUENCA DE CLAROMECÓ, PROVINCIA DE BUENOS AIRES. Revista de la Asociación Geológica Argentina 62 (1): 69-75

 

CUENCAS DE LABOULAYE, ROSARIO, LINCOLN

Ubicación

Anomalías de gravedad

Límites de cuencas de gravedad. Arriba gravedad, abajo magnetismo.

Tomado de GREGORI, ROBLES, KOSTADINOFF, ALVAREZ, RANIOLO, BARROS y STRAZZERE, 2009. LAS CUENCAS DEL EXTREMO NOROESTE DE LA PROVINCIA DE BUENOS AIRES. Revista de la Asociación Geológica Argentina 64 (4 ): 586 - 593

El basamento corresponde a valores comprendidos entre +18 y +9 mGal mientras que las anomalías magnéticas, corresponden a valores fluctuantes entre 280 y 140 nT. Este alto del basamento se halla marginado al oeste por el umbral de Trenque Lauquen (Kostadinoff 2007). El bloque del basamento margina por el norte a la cuenca de Claromecó. El sector ubicado al este del umbral de Trenque Lauquen fue estudiado por Kostadinoff (2007) y debido a sus características gravimétricas y magnéticas fue asignado al Cratón del Río de La Plata.

El sector Carlos Tejedor-Trenque Lauquen se asigna al citado cratón. Ello es debido a los elevados valores de las anomalías de Bouguer. Este hecho permite diferenciarlo del basamento del ciclo pampeano cuyas anomalías gravimétricas son considerablemente inferiores (Kostadinoff et al. 2001).

El mapa de anomalías del campo magnético terrestre, permite visualizar que éstas presentan valores comprendidos entre 0 y -100 nT. De acuerdo a ello se infiere que el basamento corresponde a roca de baja susceptibilidad magnética posiblemente granitos, granodioritas o metamorfitas que suelen presentar menor contenido de minerales ferromagnéticos. Por lo tanto la única posibilidad que explique esto es sugerir la existencia de un bloque elevado constituido por rocas similares a las aflorantes en Tandil. Similar conclusión fue alcanzada por Webster et al. (2002) para las rocas ubicadas en el alto de Guardia Vieja e interpretado como el basamento del cratón del Río de la Plata.

 

CUENCA DE LABOULAYE

Esta cuenca fue definida por Zambrano (1974) en base a información sísmica y de perforaciones. El pozo Laboulaye atravesó unos 600 m de Terciario y 700 m asignados al Triásico (Formación Laboulaye).

La sección superior de esta unidad muestra gran similitud con la Formación Fortín de la cuenca del Colorado, asignada al Cretácico Inferior, con lo cual la edad de la Formación Laboulaye podría extenderse hasta esta edad (Zambrano 1974). En este pozo no se ha reconocido a la Formación Serra Geral.

En el ámbito de la cuenca de Laboulaye se localiza un mínimo gravimétrico, ubicado entre las localidades de Villa Sauze, General Villegas y Piedritas, con valores de -13 a -22 mGal. El pozo Villa Sauze- 1, verificó la existencia de 30 m de sedimentos Cuaternarios, 141 m de Terciarios y a partir de los 496,70 mbbp aparecen 1,6 m de caliza gris clara, 4,3 m de arenisca, 3,9 m de dolomía gris, 0,3 m de caliza gris clara y 3,67 m de dolomía gris asignadas al Paleozoico.

Unos 20 km al este de Santa Aurelia una prueba de refracción realizada por YPF en 1962 (disparo 25018) permitió establecer la existencia de rocas con velocidades sísmicas superiores a 5.100 m/seg que pueden ser asignadas a rocas volcánicas triásico-jurásicas, o a rocas del Paleozoico. En un sector de la línea sísmica 3040, de Yacimientos Petrolíferos Fiscales, en cercanías de la población de Piedritas, se observa la presencia de sedimentos de edad paleozoica.

De acuerdo a las velocidades de proceso de esta línea sísmica es posible convertir los espesores dados en tiempo a metros hallándose que los mismos llegan a un máximo de 3.100 metros. Las anomalías magnéticas, ubicadas sobre el borde oriental de este depocentro con valores que oscilan entre 80 y 100 nT pueden ser asignadas a rocas ígneas, posiblemente efusiones basálticas. Valores similares (entre 75 y 100 nT) fueron determinados por Kostadinoff et al. (2006) en la cuenca de Alvear y adjudicados a la Formación Punta de las Bardas, de edad jurásica.

Los valores de las anomalías magnéticas halladas en la cuenca de Mercedes (Kostadinoff y Gregori 2004), permitieron proponer la existencia de rocas básicas con un espesor estimado de 150 m. Además, rocas basálticas del Cretácico Inferior (Formación Guardia Vieja) fueron encontradas en la cuenca de Levalle (Webster et al. 2002) ubicada unos 40 km al norte del área analizada.

Ello nos induce a considerar que en este sector, la cuenca de Laboulaye, se halla constituida por un área occidental donde se encontrarían rocas de las Formaciones Laboulaye y Serra Geral, y un sector occidental representado por la Formación Laboulaye y por sedimentitas paleozoicas.

La cuenca de Laboulaye fue identificada en el sector norte de la provincia de La Pampa por Kostadinoff et al. (2001) y muestra continuidad con el depocentro aquí descripto.

 

CUENCA DE ROSARIO

Zambrano (1974) definió a esta cuenca sobre la base de datos publicados por Padula (1972) y los datos obtenidos en el pozo Conesa. De acuerdo al primer autor la columna estaría integrada por un Terciario con velocidades sísmicas de 1,5 a 2,5 km/s, una sección con velocidades de 4,4 a 4,9 km/s, interpretadas por Padula (1972) como sedimentitas de edad triásica y reinterpretadas por Zambrano (1974) como equivalentes a una alternancia entre las Formaciones Serra Geral, San Cristóbal y Tacuarembó. Finalmente aparece el basamento cristalino.

De acuerdo a Yrigoyen (1975) hay dos alternativas para la conformación de la columna de esta cuenca. Una es considerar su similitud con la cuenca de Laboulaye y estimar la existencia de rocas paleozoica y triásicas por debajo del basalto Serra Peral, y la otra asociarla a la cuenca del Salado y considerar que la cuenca se desarrolla a partir de los derrames de la Formación Serra Geral.

En el caso de la cuenca de Laboulaye no se ha reconocido a la Formación Serra Geral, mientras que el Triásico, de 700 m de espesor esta representado por la Formación Laboulaye. Sin embargo la sección superior de esta unidad muestra gran similitud con la Formación Arata de la cuenca de Macachín y con la Formación Fortín de la cuenca del Colorado, asignadas al Cretácico Inferior, con lo cual la edad de la Formación Laboulaye podría extenderse hasta esta edad (Zambrano, 1974).

En el pozo Nogoyá-1, Herbst y Zabert (1990) interpretaron la existencia, por debajo de la Formación Serra Geral, de las Formaciones Tacuarembó (Triásico Superior- Jurásico Inferior, de 300 m de espesor), Buena Vista (Triásico Inferior) y de la Formación Yaguarí (Pérmico Superior).

Por otro lado Winn y Steinmetz (1998) reconocieron, en esta perforación, a las Formaciones Tacuarembó y Victoriano Rodríguez, asignando esta última al Pérmico. Al sureste de la localidad de Cañada Seca, se encuentra un mínimo gravimétrico de -16 mGal, con mayor desarrollo hacia la provincia de Santa Fe y coincidente en ubicación con la cuenca de Rosario (Yrigoyen 1975).

Esta cuenca se halla separada de la de Laboulaye por un umbral gravimétrico, del orden de -10 mGal que se desarrolla a lo largo de la línea Ameghino - Melo. Su expresión magnética es casi nula, por lo cual se presume la ausencia de la Formación Serra Peral, y la existencia de rocas del basamento de tipo granítico, con bajo contenido de minerales paramagnéticos.

Si se considera un basamento de densidad 2,77 gr/cm3, y un contraste de densidad de -0,1 gr/cm3 con las sedimentitas paleozoicas, se obtiene un espesor de 1.700 metros, mientras que en el caso de las rocas mesozoicas y cenozoicas, y tomando un contraste de densidad de -0,24 gr/ cm3, les corresponde un espesor de 1.500 metros.

 

CUENCA DE LINCOLN

En el extremo noreste del área investigada se ubican dos anomalías de Bouguer de -8 y de -15 mGal, respectivamente, adjudicándose la primera a la cuenca de Lincoln y la otra a la del Salado. Una anomalía magnética de -60 nT confirma la existencia de este depocentro, y la ausencia de rocas básicas en su composición. Varias líneas sísmicas permitieron a Robles y Caporossi (1996) realizar la interpretación sismoestratigráfica. De acuerdo a estos autores, la columna se hallaría integrada por rocas del Paleozoico Inferior, posiblemente depositadas en hemigraben, dada la geometría observada en las líneas sísmicas, y por rocas del Paleozoico superior equivalentes a aquellas de la Mesopotamia. La sección superior de la cuenca tiene un espesor de 1.500 m de rocas del Cretácico y del Terciario.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIBLIOGRAFIA

De Elorriaga, E.E. y Tullio, J.O. 1998. Estructuras del subsuelo y su influencia en la morfología en el norte de la provincia de La Pampa. 10º Congreso Latinoamericano de Geología y 6º Congreso Nacional de Geología Económica. Actas 3: 499-506, Buenos Aires.

Gregori D., Robles D., Kostadinoff J., Alvarez G., Raniolo A., Barros M. y Strazzere L., 2009. Las cuencas del extremo Noroeste de la Provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 64 (4 ): 586 - 593.

Herbst, R. y Zabert, L.L. 1990. Sedimentos triásicos en el subsuelo de la Mesopotamia Argentina. 11º Congreso Geológico Argentino, Actas2: 97-100. San Juan.

Kostadinoff, J. 1993. Geophysical evidence of a Paleozoic basin in the interhilly area of Buenos Aires province, Argentina. 13° International Congress on the Carboniferous and Permian System, Comptes Rendus 1: 397- 404, Buenos Aires.

Kostadinoff, J. 1995. Delimitación de estructuras, litología y espesores de corteza terrestre en áreas continentales y marinas del sistema de sierras de Tandilia. (Provincia de Buenos Aires). Tesis Doctoral. Universidad Nacional de La Plata, 147 p., La Plata.

Kostadinoff, J. 2007. Evidencia geofísica del umbral de Trenque Lauquen en la extensión norte de la cuenca de Claromecó, provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 62(1): 1-10.

Kostadinoff, J. y Font, G. 1982. Cuenca interserrana bonaerense, Argentina. 5º Congreso Latinoamericano de Geología. Actas 4: 102-121. Buenos Aires.

Kostadinoff, J. y Gregori, D. 2004. La Cuenca de Mercedes, provincia de San Luis. Revista de la Asociación Geológica Argentina 59(3): 488-494.

Kostadinoff, J., Gregori, D., Raniolo, L.A., López, V. y Strazzere, L. 2006. Configuración geológica - geofísica del sector sur de la provincia de San Luis. Revista de la Asociación Geológica Argentina 61(2): 133-148.

Kostadinoff, J., Llambías, E., Raniolo, L.A. y Alvarez, G.T. 2001. Interpretación geológica de los datos geofísicos del sector oriental de la provincia de La Pampa. Revista de la Asociación Geológica Argentina 56(4): 481-493.

Lesta, P. y Sylwan, C. 2005. Cuenca de Claromecó. En Chebli, G.A., Cortiñas, J.S., Spalletti, L.A., Legarreta, L. y Vallejo,E.L. (eds.) Frontera Exploratoria de la Argentina, 6º Congreso de Exploración y Desarrollo de Hidrocarburos, Actas: 217-231, Mar del Plata.

Padula, E.L. 1972. Subsuelo de la Mesopotamia y regiones adyacentes. En Leanza, A.F. (ed.) Geología Regional Argentina. Academia Nacional de Ciencias: 213-236, Córdoba.

Robles, D.E. y Caporossi, C.E. 1996. Lincoln Block CNE-44. A new frontier exploration area northeast basin, Argentina. 13º Congreso Geológico Argentino y 3º Congreso de Exploración de Hidrocarburos, Actas 1: 309- 328, Buenos Aires.

Webster, R.E., Chebli, G.A. y Fischer, J.F. 2002. La Cuenca General Levalle, Argentina: un rift Cretácico Inferior en el subsuelo. 5º Congreso de Exploración y Desarrollo de Hidrocarburos. Actas en CD, Mar del Plata.

Winn, Jr.R.D. y Steinmetz, J.C. 1998. Upper Paleozoic of the Chaco-Paraná basin, Argentina, and the great Gondwana glaciation. Journal of South American Earth Science 11(2): 153-168.

Yrigoyen, M. 1975. Geología del subsuelo y plataforma continental. Geología y Recursos Naturales de la provincia de Buenos Aires. 6º Congreso Geológico Argentino (Bahía Blanca), Relatorio: 139-168, Buenos Aires.

Zambrano, J.J. 1974. Cuencas sedimentarias en el subsuelo de la provincia de Buenos Aires y zonas adyacentes. Revista de la Asociación Geológica Argentina 29: 443-469

 

 

DEFORMACION GONDWANICA DE SIERRA DE LA VENTANA Y SECTORES  DEL BLOQUE DEL CHADI-LEUVU, COMARCA NORDPATAGONICA, SUDAFRICA,

HIPOTESIS DE ALOCTONIA O AUTOCTONIA DE PATAGONIA

 

The physiographic and geological differences between central Argentina and Patagonia led pioneer authors to consider Patagonia as being geologically different from South America, mainly during Gondwana time (Keidel, 1925; Windhausen, 1931, Dalmayrac et al., 1980).

The transcontinental boundary between these two crustal terranes was inferred from several photolineaments, including the Huincul Fault zone, the Río Limay Lineament and the Salinas Trapalcó–Laguna Curicó Lineament (Turner and Baldis, 1978). The zone where this interpreted boundary is located is covered by two Mesozoic basins and Tertiary–Quaternary sediments. There are no outcrops of Neopaleozoic rocks and thus the geological configuration at that time is unknown.

Permo-Triassic igneous rocks in the North Patagonia Massif and the Carboniferous marine Tepuel Basin occur to the south of the proposed boundary. To the north of the boundary are several Carboniferous marine and continental basins occur (Andacollo, El Imperial, Carapacha, and Claromecó), Contemporaneous igneous complexes are located in the Chadí Leuvú and San Rafael Blocks, which are also located to the north of the boundary.

q

Geología regional del norte de la patagonia

g

Reconstrucción del sector norte de Patagonia

Estructura trascontinental 1.gif (125376 bytes)

Estructura transcontinental límite Patagonia Gondwana

Estructura trascontinental.gif (109491 bytes)

Ubicación límite Patagonia Gondwana y regiones cercanas

In order to explain the differences between central Argentina and Patagonia, Ramos (1984) proposed that Patagonia represent an allochthonous terrane separated from Gondwana–South America by a marine basin before Carboniferous times. This terrane approached Gondwana–South America, initiating north–south directed subduction with a final stage of collision between both continental blocks in the Permian.

The subduction stage produced Permo-Triassic arc-related magmatism in the North Patagonia Massif, while the terrane accretion produced intense Permian folding and thrusting in the Sierras Australes. There are several doubts about this hypothesis. For example, no outcrops of basic-ultramafic rocks with oceanic crustal affinities have been found. The pattern of the gravimetric and magnetic anomalies (Kostadinoff and Labudía, 1991, Kostadinoff et al. 2005) north, south and over the proposed boundary are incompatible with the existence of a belt of high-density rocks below the Quaternary cover, as would be expected in the Ramos (1984) hypothesis.

Paleomagnetic studies by Rapalini (1998) in the Famatinian rocks of the North Patagonian Massif (Silurian– Devonian Sierra Grande Formation) indicate that Patagonia has not undergone latitudinal displacements relative to South America since Devonian times. The continuity of the Pampean belt southwards of the supposed boundary (González et al., 2002; Rapela and Pankhurst, 2002; Kostadinoff et al., 2005) is also at odds with the tectonic model of Ramos (1984).

Additionally, several authors (e.g., Rapalini and Vizán, 1993, Rosello et al., 1997) have interpreted the Gondwana deformation in the Sierras Australes and North Patagonian Massif as resulting from intraplate compression. This deformational event is also preserved in the Cape Fold Belt (South Africa), the Malvinas (Falkland) Islands, and in Antarctica and constitutes the ‘Samfrau Orogenic Zone’ (Söhnge, 1983, Davidson et al., 1987, Dalziel et al., 1987).

 

interaccion patagonia Gondwana.gif (42809 bytes)

Interacción Terreno Panthalassan-Gondwana

Hipotesis ramos.gif (38077 bytes)

Hipótesis interacción Patagonia Gondwana

arcos norte Somoncura.gif (38197 bytes)

Arcos del N de Patagonia relacionados con la interacción Patagonia Gondwana

Colision patagonia Gondwana.gif (42477 bytes)

Interacción final entre  Patagonia Gondwan

In La Pampa Province the Gondwana magmatic rocks crop out as a NW–SE trending belt that extends from the San Rafael and Chadí Leuvú Blocks to López Lecube (Linares et al., 1980, Llambías and Leveratto, 1975, Llambías et al., 1996, Gregori et al., 2003).

Sedimentary successions deposited in a continental setting form the small Carapacha Basin in the La Pampa Province. In the Sierras Australes and the Claromecó Basin occurs glacio-marine to fluvial sedimentary sequences of the Permo-Carboniferous Pillahuincó Group. These basins display lithological and structural features similar to the Karoo Basin in South Africa (Keidel, 1916).

In the North Patagonian Massif, magmatic rocks are widely represented by three separate belts that are oriented SW–NE, W–E and NW–SE. The NW–SE trending belt is present in the studied area and extends from Yaminué to the Atlantic coast.

Foliated granites (Yaminué, Tapera, María Teresa, Laguna Medina, Peñas Blancas and La Laguna) and non-foliated plutonic complexes (Donosa, Calvo, Navarrete, Flores, Pailemán, Tembrao, La Verde) outcrop along the belt (Llambías and Rapela, 1984, Rapela and Caminos, 1987, Grecco et al., 1994, Giacosa, 1997). Several small Middle to Upper Triassic continental rifts are located in the Los Menucos and the Comallo areas. These rifts mainly contain pyroclastic deposits.

Kostadinoff et al. (2005) described several gravimetric and magnetic anomalies, as well as the continuation of the Huincul Fault zone and the Choele Choel High. Unpublished internal reports on seismic surveys by Yacimientos Petrolíferos Fiscales (YPF) provide information about the subsurface architecture in this region.

 

Belts of steep gravity gradients

In order to validate the continuity of the Huincul Fault zone and other structural lineaments proposed by Turner and Baldis (1978), we focused on areas with steep gravity gradients in the gravity anomaly map. Such steep gradients are usually interpreted as representing fault structures (Nettleton, 1976), boundaries of rocks with contrasting petrophysical characteristics or sutures (Gibb and Thomas, 1976, Wellman 1978, Coward and Fairhead 1980, Gibb et al. 1983).

Differences in density or thickness between blocks are often responsible for steep gradients (Gibb and Thomas, 1976, Thomas, 1983, Kunar et al. 2004, Williams et al., 2006). Values between 0.5 and 2 mGal/km, were obtained using the gradient and second derivate operator. A 3D image generated using Surfer 8™, show several lineaments defined by belts with steep gravity gradients.

The table indicates the name, location, gradient, any surface evidence and possible age of each lineament.

Lineament
Location Gradient (mGal/km) Direction Surface evidence Related to Possible age
A
Salitral Bajo de Menucos to Chimpay 1–1.3 SW–NE Not surface evidence, due to the Tertiary–Quaternary coveR The continuity of the Sierra Blanca de la Totora, Patú Co and El Loro fault system (200 km long) The Sierra Blanca de la Totora, Patú Co and El Loro fault system were active during emplacement of the Upper Paleozoic granitic bodies located between these lineaments (Saini-Eidukat et al., in press)
B
Cerro Mesa to Laguna La Larga 1–1.2 in the NW segment. 0.5 in theW– E segment. NW–SE A system of topographic lows (Salitral Ojo de Agua, Laguna Larga) Parallel to the Pangaré Mylonite (Gregori et a., 2000) and Salinas Trapalcó–Laguna Curicó lineament (Ramos and Cortés, 1984 The Pangaré Mylonite was active during Upper Paleozoic (Saini-Eidukat et al., in press)
C
Laguna La Larga to Bajo La Salamanca 0.5 SW–NE Not surficial expression, extensive Tertiary–Quaternary cover. The continuity of the Nahuel Niyeu lineament system, which is a major structure 25 km wide, 65 km long between the Salinas Trapalcó–Laguna Cuiricó Lineament (Ramos and Cortés, 1984) and the Somoncura Plateau. Include the Arroyo Seco, Barda de Lucho, Arroyo Salado, Laguna Negra, Quiroga and Ramos lineaments, the Tardugno, Musters and Huanteleo faults and the Nahuel Niyeu, Railer and Rana thrust sheets According to von Gosen (2003) the Nahuel Niyeu, Railer and Rana thrust sheets indicate N–S transport during the Neopaleozoic.
D
Puesto Medina to Estación Mancha Blanca 1 NW–SE Parallel to the Salinas Trapalcó– Laguna Curicó lineament (Ramos and Cortés, 1984. Possibly related to the El Jaguelito Fault zone (Ramos, 1975 El Jaguelito Fault zone and associated minor mylonitic belts were active during the Upper Paleozoic (Giacosa, 2001)
E
Bajo La Salamanca to La Salina 0.5 NW–SE and E–W The Rio Negro follows approximately the lineament direction Parallel to the Salinas Trapalcó–Laguna Curicó lineament (Ramos and Cortés, 1984) Since this lineament shows a strike and development similar to lineament D it is believed that both were generated during the same episode
F
San Antonio Oeste to Zanjón de Oyuela 2 W–E and ENE direction Not surficial expression was recognized ? ? ?
G
La Salina to Salinas del Gualicho 2 W–E Not topographic features represent this lineament. Located inside of the Viedma High Possibly a continuation of the Huincul Fault zone ?

Three main lineament orientations directions can be recognized: lineaments A and C are NE–SW trending; lineaments B, D and E are NW–SE trending; and lineaments F, G and the Huincul Fault zone are E–W trending. The E–W lineaments exhibit more complex geometries than the other lineaments. Most lineaments form the boundary of the Choele Choel High (e.g. A, B, C, E and the Huincul Fault zone).

j
       

Huincul Fault zone
Because the Huincul Fault zone (Kostadinoff et al., 2005) crops out in the Neuquén Basin (Windhausen, 1914 and Keidel, 1925), its configuration and kinematics are relatively well constrained. The Huincul Fault Zone displays dextral strike-slip movement (Orchuela and Ploszkiewicz, 1984) and a zig-zag along strike pattern. This pattern suggests that both transtensional and transpressional conditions occurred during fault movement, resulting in the contemporaneous development of positive and negative flower structures. This fault system was active from Upper Paleozoic–Triassic times, as recorded by continental depocenters associated with the transtensional subsidence (Vergani et al. 1995).


Its eastwards continuity was suggested by Turner and Baldis (1978), and established by Orchuela and Ploszkiewicz (1984) based on interpretation of seismic reflection data. The high gravimetric gradients between Neuquén and Cubanea support the continuity of the Huincul Fault Zone until 63° 40´W, with maximum gradients (2 m Gal/km) between the Neuquén Basin and 64° 45´W–39° 20´S.


The section between Neuquén and Chimpay shows a smooth releasing bend, that changes to a restraining bend in the Chimpay-63° 40´W section. The gravity anomalies are discontinuous along the fault zone. In the area between Chimpay and Cubanea, the differences in magnitude of the anomaly between the Choele Choel High and the Carapacha Basin and the Río Colorado High mark the trace of this fault zone. In the section between Chimpay and Neuquén, such differences in the anomalies are less evident, but high gravimetric gradients (2 mGal/km) are interpreted to reflect the location of the fault zone.

Magnetic anomalies are diffusely coincident with the interpreted fault zone between 5 and 10 km north of Chichinales and Choele Choel. These anomalies are low-amplitude (175 to 75 nT) and are interpreted to be related to the Albian– Coniacian red beds of the Neuquén Group, which contain abundant Fe-oxides (hematite). The sediments have a magnetic susceptibility of 0.006500 SI (Telford et al., 1990), which is sufficient to explain the magnitude of the magnetic anomalies.

These low-magnitude anomalies do not compared with magnetic anomalies typically observed in sutures zones because suture zones are generally composed by serpentinite zones associated with sheared peridotites, which have a magnetic response N500 nT (Ferraccioli et al., 2002).

The Huincul Fault zone is therefore unlikely to be a suture. In the Neuquén–Chichinales section the Neuquén Group is 1000 m thick, but in the cliffs located south of the Rio Negro, only the upper section of this unit crop outs.

In contrast, the area north of the fault zone, Upper Cretaceous–Lower Tertiary marine Malargue Group crop out, suggesting more than 500 m of vertical displacement across a fault zone. Due to the outline of the Huincul Fault Zone, the section between Plaza Huincul and Picún Leufú and between Neuquén and Chimpay represent domains of dextral transpressive shear (Orchuela and Ploszkiewicz, 1984), where basement rocks are exposed in the fault zone. In the section between Chimpay and 64° 15´W, deformation appears to be transtensional based on the existence of small depocenters associated to the fault zone.

 

Mylonitic belts and lineaments with steep gravimetric and high magnetic gradients in northern Patagonia, southern La Pampa and Buenos Aires provinces

Northern Patagonia is characterized by the presence of several mylonitic belts and regional structural lineaments, whose geometries, deformational mechanisms and age mostly remains unclear.

The better-known of these lineaments and mylonites include:

a) Pangaré and La Seña mylonites (Gregori et al., 2000), are formed by two belts, each 1 km wide, 15 km long, and comprising granitic augen-mylonites, protomylonites, mylonites and ultramylonites, with strikes between 310° and 330°. They exhibit sinistral movement associated with an east–west compression.

b) Peynecura mylonitic belt (Llambías et al., 2002) is more than 500mwide, 15 kmlong, and has a NNW–SSE strike. The deformation is interpreted to have occurred during the Early Triassic because is related to foliated granites of such age. No information about strain orientation is available.

c) The El Jaguelito Fault zone is a 50 km long NW–SE dextral lineament that appears in the eastern area of the North Patagonian Massif. According to Ramos and Cortés (1984), deformation occurred during Upper Paleozoic times.

d) Peñas Blancas and La Laguna mylonites are described by Giacosa (1996). They are 10 km long, and are temporal related to the foliated Permian-aged Peñas Blancas and La Laguna Granites. Four more NW–SE mylonitic belts were recognized during regional mapping in this area, but information on strain orientation is unavailable. The timing of deformation is interpreted to be Gondwanan because the foliated granites were intruded at the same time as mylonitization occur.

e) The Nahuel Niyeu lineament system is a major structure that is 25 km wide, and extends for 65 km long between the Salinas Trapalcó–Laguna Curicó Lineament and the Somoncura Plateau

Nahuel Niyeu lineament includes the Arroyo Seco, Barda de Lucho, Arroyo Salado, Laguna Negra, Quiroga and Ramos lineaments, the Tardugno, Musters and Huanteleo faults and the Nahuel Niyeu, Railer and Rana thrust sheets

In the La Pampa province, a mylonitic belt was described in Cerro de los Viejos by Tickyj et al. (1997).

A further four belts of steep gravity gradients which were interpreted as major structures were described by Kostadinoff et al. (2001). These four belts include:

a) The Quehué lineaments is a 350 km long, 15 km wide. It is defined in the gravity data by a 2 mGal/km gradient which defines a structure interpreted to represent the boundaries of the Triassic Quehué basin.

b) The Valle Daza-Cuchillo Có lineament is a 310–320° trending belt that is 100 kmlong and characterised by a steep gradient in gravimetry data. This lineament is interpreted to represent the western boundary of the Rio Colorado High.

 

c) The Cerro los Viejos lineament extends in a NW-direction for more than 100 km from Cerro Los Viejos and is possibly related to the Cerro Los Viejos mylonite. According to Kostadinoff and Llambías (2002), the Cerro los Viejos lineament represents the contact between the Permian Carapacha Basin and the Río Colorado High. This lineament and its associated steep gravity gradient disappears in the central part of the La Pampa province, but is identified near Algarrobo del Aguila as a 50 km long, 15 km wide lineament with steep gravity gradient. This NW-trending structure is considered to be the boundary of a Triassic basin (Kostadinoff and Llambías, 2002).

 

r

d) The Macachín Rift includes Paleozoic and Mesozoic sedimentary sequences deposited in a NNW–SSE extensional basin.

Outcrops of igneous and sedimentary Gondwanan rocks in the central part of the La Pampa province follow WNW or NW trends, which suggest structural control.

In the Buenos Aires Province strike-slip faults located north and south have been used to explain the structure of the Sierras Australes. For example, Newton and Cingolani (1990) showed a series of WNW–ESE trending sinistral strike-slip faults near Pigue and Cerros Colorados, which are evident in gravity data (Alvarez, 2004). In the Bahía Blanca area, Bonorino et al. (1987) showed the occurrence of several lineaments with steep gravity gradients south of Sierras Australes. Lineaments of importance include the Salitral de la Vidriera and Nueva Roma belts, which are strike-slip fault zones longer than 100 km in strike extent.

Gondwana deformation in the Neuquén Basin, northern Patagonia and southern La Pampa and Buenos Aires provinces

Windhausen (1914), Keidel (1925) and Groeber (1929) described NE–SW structures transverse to the N–S Andean Orogeny in the Neuquén Basin. According to these authors, as well as Herrero Ducloux (1946) and De Ferraris (1947) the stratigraphic and structural evidences suggest folding during the Cenomanian or the Middle Jurassic.

They observed that the structures mimic the northwestern and northern border of the North Patagonian Massif and that they possibly formed during NW- and N-directed lateral translation of the massif. These structures were grouped in the “Dorsal de Huincul” (Huincul Fault zone) by De Ferraris (1947).

In the North Patagonian Massif, the Gondwana deformation is recorded by the Pangaré and La Seña mylonites. Clearly defined δ and σ type porphyroclasts of K-feldspar, and shaped lenses of Qz–K-feldspar, support sinistral movement. These belts and the associated foliated granite (Gregori et al., 2000) indicate maximum compression (σ1) in a WNW–ESE direction during Middle to Upper Triassic (Saini-Eidukat et al., in press). In the El Jaguelito Fault zone, the fault pattern suggests a dextral transcurrence along N 310° during Upper Paleozoic times (Ramos and Cortés, 1984).

SE, S and SW vergence occurred along the Nahuel Niyeu lineament system ), each of which was related to three phases of deformation, with principle shortening directions in NE–SW, NW–SE and E–W directions during Permo-Triassic times (von Gosen, 2003).

In the Sierra Grande area, the Pampean El Jaguelito Formation contains evidence which supports a D1 event that was generated byNW–SE or E–Wshortening (Giacosa and Paredes, 2001, von Gosen, 2002). In the same area, the Famatinian Sierra Grande Formation is folded around open synclines and anticlines that have N–S trending axial traces.

The Permian Laguna Medina granite intrudes the Sierra Grande Formation and records a ductile E–W shortening deformation event, which was coincident with deformation of the Sierra Grande Formation (Rossello et al., 1997, von Gosen, 2002).

Transport directions from NE to SW during the Gondwana deformation was accommodated along mylonites within the Peñas Blancas and La Laguna Granites (Giacosa, 2001, von Gosen, 2002).

In the North Patagonian Massif, the Sierra Grande Formation, the Laguna Medina Granite and foliated granites and mylonites in the Estancias La Seña and Pangaré area all indicate shortening in aWNW–ESE or E–Wdirection.

The mylonites in the Peñas Blancas and La Laguna Granites and thrust sheets and faults in the Nahuel Niyeu area are related to a N–S or SW–NE shortening (Giacosa, 2001, von Gosen, 2002).

In the La Pampa Province, the Carapacha Basin exhibits a NW–SE elongation, suggesting basin development occurred during NE–SWdirection extension. Folding of the sedimentary successions and inversion in the Carapacha Basin (Melchor, 1999) and mylonitization of the Cerro de los Viejos granite (Tickyj et al., 1997) dated as Late Permian (254±2 Ma), suggests that both areas were affected by the same deformational phase related to a NE–SW shortening.

In the Sierras Australes of Buenos Aires Province, the Pillahuincó Group (Carboniferous-Permian) was deformed between the late Early Permian and the early Late Permian (Tomezzoli and Vilas, 1996).

Deformation generated a sigmoidally-shaped mountain chain. Folding and overthrusting occurred during NE vergence (von Gosen et al., 1990). This deformation was related to sinistral transpressive deformation (Sellés Martinez, 1989) along the WNW–ESE Pigué transcurrent fault system (Alvarez, 2004) and the Salitral de la Vidriera and Nueva Roma transcurrent fault systems (Bonorino et al., 1987).

The deformation was interpreted to be related to transpressive movement of the “Patagonian block” relative to the South American craton during Permo-Triassic time (Martinez, 1980), although little supporting evidence was provided. Sellés Martínez (1989) considered the deformation in Sierras Australes to be due to a transpressive regime between the Patagonian block and the South American craton during the Late Permian oblique subduction.

Detailed structural studies in the Sierras Australes define a sigmoidal belt, with fold trends rotating N60° clockwise, from WNW to NNW, a configuration attributable to dextral transpression (Cobbold et al., 1986, 1991, 1992).

Inferred directions of principle shortening are oblique to the orogenic belt, and to the convergent southern margin of Gondwana and are interpreted to result from oblique (dextral) subduction beneath an Andean-type margin (Cobbold et al., 1992, Craddock et al., 1998). Consequently, the sedimentary basins, the emplacement of the Gondwana intrusive and volcanic rocks and the regional structure north of the Colorado and Negro rivers are related to a first SW–NE extension, which later switched to a shortening regime in a NE–SW or N–S direction.

In their structural analysis of northern Patagonia, Turner and Baldis (1978) identified several NW–SE lineaments in the area between Bajo del Gualicho and Golfo San Matías.

They suggested variable compressive stresses in the North Patagonian Massif including: west-shortening directed (Río Limay area); northeast-directed shortening (Salinas del Gualicho); eastdirected shortening (Sierra Grande); and southwest-directed shortening (El Cuy). The variation in stress directions is attributed to counterclockwise rotation of the North Patagonian Massif.

 

Deformation in the southern area of the Gondwana supercontinent

The first detailed reconstruction of the relative position of Africa and South America during the Upper Paleozoic was given by du Toit (1927). The continuity of an orogenic system was extended from South America to Australia, passing just south of the Permo-Triassic fold belts, introducing the name of Samfrau Orogenic Zone (du Toit, 1937). This belt is nearly equivalent to what we understand today as the Gondwanide Orogenic Belt (du Toit, 1937).

In the South African segment, the arrangement of the Gondwanide Orogenic Belt and the associated basins is strongly conditioned by the configuration of older basements blocks (Kaapvaal, ≥2.5 Ga, Namaqua-Natal, ≈1 Ga and Gariep, Saldania and Mozambique, 1–0.5 Ga). The Ordovician–Devonian Cape Basin follows a main W–E trend along the Saldania province with branches to the NW and NE. The Cape Fold Belt includes southern and western tectonic domains (Söhnge, 1983), separated by the Cape Syntaxis, across which the structural strike, and the intensity of deformation changes markedly (de Beer, 1995).

The southern domain extends from the eastern margin of the Cape Syntaxis to Port Elizabeth and is characterized by east–west-trending, north-verging structures including bedding- parallel thrusts and north-verging folds. No evidence for dextral shearing was found in this domain.

In the western domain, strata is mildly deformed (de Beer, 1992). Folds and faults trend northwest to north (de Beer, 1990). North-trending slickensides developed on thrust planes (Ransome and de Wit, 1992) and stretching lineations (Cobbold et al., 1992) indicate a component of strike-parallel displacement. The pattern of folds, faults and lineations are consistent with overall dextral strike-slip deformation (Cobbold et al., 1992).

The Cape Syntaxis is a northeast-trending structural domain that separates the southern and western domains (de Beer, 1995). Based on a reconnaissance of the structure of the syntaxis and adjacent domains, Ransome and de Wit (1992) proposed a model in which the continental crust to the west of Cape Syntaxis was rotated clockwise during syntaxis formation, while crust immediately east is rotated counter-clockwise.

In the Malvinas (Falkland) Islands, Late Permian fold and thrust belt structures form the eastward continuation of the Cape Fold Belt when restored into a pre-Gondwana break-up configuration. Detailed structural studies by Curtis and Hyam (1998) and Hyam (1998) suggest that these structures developed in a complex strain system of combined NW–SE shortening and dextral shear.

In Antarctica, the Gondwanide Orogen extends through the Ellsworth–Whitmore Mountain block and the Pensacola Mountains (Curtis and Storey, 1996). During Gondwanide orogenesis the Ellsworth–Whitmore Mountain block is assumed to have occupied a site intermediate between the more easterly Falkland Islands and the more westerly Pensacola Mountains (Curtis and Storey, 1996).

Structural analyses (fold orientation, shortening directions and strain partitioning) indicate contemporaneous development of gently plunging foreland-verging folds and asymmetric, steeply plunging folds symptomatic of deformation within a highly oblique dextral transpressive belt (Curtis, 1997, 1998, Craddock et al., 1998). Dextral transpressional structures are evident throughout much of the Gondwanide Belt, suggesting a component of dextral transpressional during the evolution of this orogenic belt.

Johnston (2000) indicated that the east–west-trending domain of the Cape Fold Belt ends to the west and east against the northwest-trending South American and Antarctic portions of the Gondwanide Orogen respectively.

 

Tectonic model

The diverse shortening directions and lateral crustal translations during Gondwana time north and south of the interpreted boundary between northern Patagonia and Gondwana South America cannot be explained as the result of homogeneous stress regime (i.e. NE–SW compression due to the subduction and collision of Patagonia with the southern margin of Gondwana South America) as speculated by Ramos (1984), and von Gosen (2002, 2003).

All lineaments plotted (those both related and unrelated to mylonites, and the belts with steep gravity and magnetic gradients, presumably active during Gondwana times) suggest a lineament network that defines a block system.

This collage of continental crustal blocks and its movement was the result of a tectonic event that produced crustal fragmentation. The geometry of individual blocks controlled the block movement and therefore the development of mylonite belts and other lineaments.

In order to explain the variable stress regime in which zone of compressional and extensional tectonism were active at the same time over such a large area, we require movement of crustal blocks along arcuate strike-slip faults. This style of deformation is common during collisional orogeny, where frontal zones are deformed during indentor tectonics, where the lateral terminations of the indentor involve extensive escape tectonics (Ratschbacher et al., 1991).

The size and shape of the continental fragments involved, the orientation of the indentor, and the collision vector, influence the extent and geometry of indentation and later escape. Modern examples of large-scale indentation-escape orogens are found in the Himalaya-Alpine belt. These models include the collision of the Arabian and the European plates (west-directed escape) and the east- and southeast-directed escape of southeast Asia following the collision of India and Asia (Tapponnier and Molnar, 1976).

The transcurrent shear zones separating elongate crustal slices are the most important large-scale structural features in these Himalaya–Alpine models. Indentation-escape tectonics is widely observed and accepted in younger orogens, but has not been recognized to the same extent in older mountain belts, probably because the structures associated with such a tectonic regime are less obvious.

In addition, subsequent orogenic events may obscure the presence of an ancient indentation-escape regime (Ratschbacher et al., 1991). Several examples of Precambrian indentation-escape tectonics have been described. In southern Africa, the proto-Kalahari craton acted as a southwest-directed indenter into juvenile Mesoproterozoic island-arc terranes at ca. 1100 Ma (Jacobs et al., 1993). The associated escape tectonics regime in the orogen is shown by extensive craton-parallel ductile shear zones and the development of pull-apart basins in the preserved African foreland (Koras– Sinclair basins).

Other example of indenter-escape tectonic has been reported in Australia, where the Yilgara craton indented the Pilbara–Gawler craton during the late Paleoproterozoic Capricorn orogeny (Krapez, 1999). Another example is the East African–Antarctic orogen, which resulted from the collision of various parts of proto-East and West Gondwana during late Neoproterozoic–early Paleozoic time (between 650 and 500Ma).

The southern part of this Himalayan-type orogen can be interpreted in terms of a lateral-escape tectonic model. Small microplates (the Falkland, Ellsworth–Haag, and Filchner blocks) probably represent shear-zone-bounded blocks produced by tectonic translation during lateral escape, similar to those currently evolving in Southeast Asia.

Assuming amodel of indentation-escape tectonics for northern Patagonia, the belts with steep gravity gradients described in this study represent transcurrent shear zones separating shear-zonebounded blocks. The block situated between lineaments C, D and E has possibly acted as a northwest-directed indenter associated with west-directed movements of the area located south of the Huincul Fault zone.

Several small blocks were displaced west and southwest, possibly the western sector of the Choele Choel High and the areas located west of the line A and southwest of line B, as recorded in the La Seña–Pangaré mylonites and Nahuel Niyeu system.

The eastern sector of the Choele Choel High, between the Huincul Fault zone and lineament E was displaced to the east and southeast during lateral escape. In areas of transpression, such as along the Huincul Fault Zone between Estancia El Caldén and Chimpay, rocks were faulted upwards to form positive flower structures.

r

Such a configuration can explain the uplift of the Choele Choel High against the Carapacha Basin and accounts for the change of detritus composition as detected in the Carapacha and Claromecó Basins (Rossello et al, 1997, Melchor, 1999). It seems probable that some blocks in the North Patagonian Massif, located south of the Huincul Fault Zone, rotated counterclockwise during Permo-Triassic time. It is doubtful that the deformation can be explained in terms of the collision of two major crustal blocks, principally because there is no conclusive evidence for such a collision.

The development of the Gondwanide deformation in northern Patagonia–Sierras Australes–La Pampa province in a location far from the active convergent margin of Gondwana is attributable to two factors:

a) dextral margin-parallel translation of a crustal block or blocks outboard of the Gondwanide Orogen; and

b) the oblique orientation of this area relative to the east–west trend (present coordinates) of the orogen in the Cape Fold Belt, as shown in Fig. 12B.

Coincidences in timing of deformation and the orientation of principal stress directions, point to an evolutionary history that is similar to other portions of the Gondwanide Orogen (de Wit and Ransome, 1992; Cobbold et al., 1991, Vaughan and Pankhurst, 2008).

In the southern Canadian Rocky Mountain fold and thrust belt, Late Cretaceous and Tertiary deformation developed ~1500 km inboard of the active convergent margin (McMechan and Thompson, 1989).

Oblique (dextral) subduction of oceanic plates beneath western North America resulted in the development of major dextral strike-slip faults within the overriding North American crust.

The development of this fold and thrust belt 1500 km inboard of the cordilleran margin in response to oblique subduction-driven, margin-parallel dextral translation was considered as an analogue for development of the Cape Fold Belt (Johnston, 2000).

According to the evidence presented here, this model can also be applied to northern Patagonia. However, the relatively extensive width of this active margin is at present not fully understood.

 

Conclusions

North–South belts of Pampean and Famatinian rocks that cross the supposed boundary between the northern Patagonia and central Argentina regions support the presence of a common continental crust in both areas.

No geological or geophysical evidences for oceanic crust formed by mafic– ultramafic rocks between both areas have been identified.

The gravity and magnetic anomalies over the supposed boundary are incompatible with a suture composed of such rocks. The continental crust in the studied area was sliced by displacements along the dextral Huincul Fault Zone and several minor lineaments that represent strike-slip faults along the boundaries of several continental blocks.

South of the Huincul Fault Zone, the indentation of these blocks, related to the translation and simultaneous counterclockwise rotation along a NW-direction produced escape of minor slices in W, SW, E, SE, and N directions. Such movements are recorded in Gondwana rocks and mylonitic belts around northern Patagonia. Transpression in the northern part of the massif possibly produced positive flower structures, e.g.: the Choele Choel High or those recognized in the Neuquén Basin.

The balance of evidence suggests that the Gondwanide Orogeny in the northern Patagonia area is due to the transtensive– transpressive deformation. The dextral strike-slip component detected in the northern Patagonia–Sierras Australes, Cape Fold Belt (Africa), and in the Ellsworth Whitmore Mountains block (Antarctica), may reflect margin-parallel strike-slip movements induced by oblique subduction (Cobbold et al., 1991, 1992) beneath the convergent southern margin of Gondwana.

 

Tomado de Gregori, D. A., Kostadinoff, J., Strazzere, L. and Raniolo, L. A., 2008. Tectonic significance and consequences of the Gondwanide orogeny in northern Patagonia, Argentina, Gondwana Research 14, 429–450
   
       
 
BIBLIOGRAFIA

Basei, M. A. S., Varela, R., Sato, A. M., Siga, Jr., O. and Llambías, E. J., 2002. Geocronología sobre rocas del Complejo Yaminué, MacizoNordpatagónico, Río Negro, Argentina. XV Congreso Geológico Argentino, El Calafate. Actas en CD.

Bjerg, E. A., Gregori, D. A. y Labudía, C. H. 1998. Geología y estratigrafía de la región de El Cuy, Comarca Nordpatagónica, provincia de Río Negro, República Argentina. Revista de la Asociación Geológica Argentina, 52 (3): 387-399.

Caminos, R., Chernicoff, C. J., Fauqué, L., Franchi, M. and Espejo, P., 1999. Geología y Recursos Minerales de la Hoja 4166-1. Valcheta. (1:250.000), 132 pp. Servicio Geológico Minero Argentino. Viedma.

Chernicoff, C. J. y Caminos, R. 1996. Estructura y relaciones estratigráficas de la Formación Nahuel Niyeu, Macizo Nordpatagónico oriental, Provincia de Río Negro. Revista de la Asociación Geológica Argentina, 51 (3): 201-212.

Chernicoff, C. J. and Zappettini, E. O., 2004. Geophysical Evidence for Terrane Boundaries in South Central Argentina. Gondwana Research, 7 (4): 1105-1116.

Cingolani, C., Dalla Salda, L., Hervé, F., Munizaga, F., Pankhurst, R., Parada, M. A. and Rapela, C. W., 1991. The magmatic evolution of northern Patagonia: New impressions of pre-Andean and Andean tectonics. In Andean magmatisn and its tectonic setting (Ed: Harmon, R. S. and Rapela, C. W.) Special Paper Geological Society of America, 265: 29-44.

Coira, B., Nullo, F., Proserpio, C. and Ramos, V., 1975. Tectónica del basamento de la región occidental del Macizo Nordpatagónico (Prov. de Río Negro y Chubut). Revista de la Asociación Geológica Argentina, 30 (4): 361-384.

Dalla Salda, L. H., Cingolani, C. and Varela, R., 1990. The origin of Patagonia. Comunicaciones, 41: 55-64. Departamento de Geología, Universidad de Chile, Santiago.

Dalla Salda, L. H., Cingolani, C. and Varela, R., 1991. El basamento pre-andino ígneo-metamórfico de San Martín de los Andes, Neuquén. Revista de la Asociación Geológica Argentina, 46, 223-234.

Dalla Salda, L. H., Cingolani, C. and Varela, R., 1992. Early Palaeozoic orogenic belt of the Andes in South America: Result of Laurentia-Gondwana collision. Geology, 20: 616-620

Dalla Salda, L.H., Varela, R., Cingolani, C., and Aragón, E., 1994, The Rio Chico Paleozoic Crystalline Complex and the evolution of Northern Patagonia: Journal South American Earth Sciences. 7: 377-386.

Dalmayrac, B., Laubacher, G., Marocco, R., Martinez, C. and Tomasi, P., 1980. La chaine hercynienne d` Amerique du Sud. Structure et evolution d`un orogene intracratonique. Sonderdruck a. d. Geol. Rundschau. 69 (1): 1-21.

Dalziel, I. W. D., Garrett, S. W., Grunow, A. M., Pankhurst, R. J., Storey, B. C., and Vennum, W. R., 1987. The Ellsworth-Whitmore Crustal Block: Its Role in the Tectonic Evolution of West Antarctica, In: Gondwana Six: Structure, Tectonics, and Geophysics. (Ed: Gary D. McKenzie). American Geophysical Union, Geophysical Monograph Number 40: 173-182.  

Davidson, J., Mpodozis, C., Godoy, E., Hervé, F., Pankhurst, R. and Brook, M., 1987. Late Paleozoic accretionary complexes on the Gondwana margin of southern Chile: Evidence from the Chonos Archipielago. In: Gondwana Six: Structure, Tectonics, and Geophysics. Geophysical Monography Series, 40: 221-227. (Ed.: McKenzie, G. D.) American Geophysical Union, Washington.

Du Toit, A. L., 1937. Our wandering continents. 366 pp. Oliver and Boyd, Edinburgh.

Ford, A. B., 1972. Weddell Orogeny-Latest Permian to Early Mesozoic deformation at the Weddell Sea margin of the Transantarctic Mountains. International Union of Geological Science, Series B 1: 419-425.

Giacosa, R. E., 1996. Zonas de cizalla frágil-dúctil en el sector oriental del Macizo Norpatagónico. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos. Actas II: 395.  

Giacosa, R. E., 1997. Geología y petrología de las rocas pre-cretácicas de la región de Sierra Pailemán, Provincia de Río Negro. Revista de la Asociación Geológica Argentina, 52 (1): 65-80.

Giacosa, R. E., 2001. Zonas de cizalla frágil-dúctil neopaleozoicas en el nordeste de la Patagonia. Revista de la Asociación Geológica Argentina, 56 (2): 131-140.

Giacosa, R. E. and Paredes, J. M., 2001. Estructura de las metamorfitas del Paleozoico temprano en el Arroyo. Salado. Macizo Nordpatagónico, Río Negro. Revista de la Asociación Geológica Argentina, 56(2): 141-149.  

González, P. D., Poiré, D. and Varela, R., 2002. Hallazgo de trazas fósiles en la Formación El Jagüelito y su relación con la edad de las metasedimentitas, Macizo Nordpatagónico Oriental, Provincia de Río Negro. Revista de la Asociación Geológica Argentina, 57 (1): 35-44.

Grecco, L. E., Gregori, D. A., Rapela, C. W., Pankhurst, R. J. and Labudía, C. H., 1994. Peraluminous granites in the northeastern section of the North Patagonian Massif: 7 Congreso Geológico Chileno. 1354-1359. Concepción

Gregori, D. A., Bjerg, E. A: and Saini-Eidukat, B., 2000. New insights on the Jurassic Granites from Somoncura Region, Patagonia, Argentina. XVII Simposio sobre la geología de Latinoamérica. Stuttgart,

Gregori, D. A., Grecco, L. E. and Llambías, E. J., 2003. El intrusivo López Lecube: Evidencias de magmatismo alcalino Gondwánico en el sector sudoeste de la provincia de Buenos Aires, Argentina. Revista de la Asociación Geológica Argentina. 58 (2): 167-175.  

Gregori, D. A., Kostadinoff, J., Strazzere, L. and Raniolo, L. A., 2008. Tectonic significance and consequences of the Gondwanide orogeny in northern Patagonia, Argentina, Gondwana Research 14, 429–450

Holzförster, F., Stollhofen, H., Lorenz, V and Stanistreet, I. G., 1998. The Waterberg Basin in Central Namibia: transfer fault activity during early South Atlantic rift evolution. Journal of African Earth Sciences 27, (1A): 116-117.

Hälbich, I. W., Fitch, F. J. & Miller, J. A. 1983. Dating the Cape orogeny. In Geodynamics of the Cape Fold Belt. (Ed: Söhnge, A. P. G. and Hälbich, I. W). Special Publication Geological Society South Africa 12: 149-164.

Johnston, S.T., 2000. The Cape Fold Belt and Syntaxis and the rotated Falkland Islands: dextral transpressional tectonics along the southwest margin of Gondwana. Journal of African Earth Sciences, Vol. 31, No. 1, pp. 1-13.

Keidel, J., 1925. Sobre el desarrollo paleogeográfico de las grandes unidades geológicas de la Argentina. Soc. Arg. Est. Geogr. GAEA. Anales 4: 251-312.

Kostadinoff, J. and Labudía, C. H., 1991. Algunas características del basamento en la desembocadura del Río Negro a partir de datos gravimagnetométricos. Revista de la Asociación Geológica Argentina. 46 (3-4): 173-180.

Kostadinoff J., Llambías, E., Raniolo, L. A. and Alvarez, G., 2001. Geología y Geofísica del sector oriental de la provincia de La Pampa. Revista de la Asociación Geológica Argentina. 56 (4): 481-493.

Kostadinoff, J., Gregori, D. A. and Raniolo, A., 2005. Configuración geofísica-geológica del sector Norte de la provincia de Río Negro. Revista de la Asociación Geológica Argentina. XXX (3-4).

Kostadinoff, J. and Llambías, E., 2002. Cuencas sedimentarias en el subsuelo de la provincia de La Pampa. V Congreso de Exploración y Explotación de Hidrocarburos. Editado en CD. Mar del Plata

Labudía, C. H. and Bjerg, E. A., 1995. Geología del sector oriental de la Hoja Bajo Hondo (39e), provincia de Río Negro. Revista de la Asociación Geológica Argentina, 49 (3-4): 284-296.

Linares, E., Llambías, E. J. and Latorre, C. O., 1980. Geología de la Provincia de La Pampa, República Argentina y geocronología de sus rocas metamórficas y eruptivas. Revista de la Asociación Geológica Argentina, 35: 87-146.

Llambías, E. J., and Leveratto, M. A., 1975. El plateau riolítico de la provincia de La Pampa, República Argentina. II Congreso Iberoamericano de Geología Económica, Buenos Aires, Actas 1, 99–114.

Llambías, E. J., Melchor, R. N., Tickyj, H. and Sato, A. M., 1996. Geología del Bloque del Chadileuvú. 13º Congreso Geológico Argentino, Actas V: 417-425. Buenos Aires.

Llambías, E. J., Sonia Quenardelle, S. and Montenegro, T. 2003. The Choiyoi Group from central Argentina: a subalkaline transitional to alkaline association in the craton adjacent to the active margin of the Gondwana continent Journal of South American Earth Sciences, 16: 243-255.

Llambías, E. J., and Rapela, C. W., 1984, Geología de los Complejos Eruptivos de la Esperanza, Provincia de Río Negro. Revista de la Asociación Geológica Argentina, 39: 220-243.

Llambías, E. J., Varela, R., Basei, M. and Sato, A. M., 2002. Deformación y metamorfismo neopaleozoico en Yaminué, Macizo Nordpatagónico (40º 50´S, 67º 40´W): su relación con la fase orogénica San Rafael y el arco de los Gondwánides. 15º Congreso Geológico Argentino, Actas en CD. El Calafate.

Melchor, R. N., 1999. Redefinición estratigráfica de la Formación Carapacha (Pérmico), provincia de La Pampa. Revista de la Asociación Geológica Argentina, 54(2): 99-108.

Nullo, F., 1979. Descripción geológica de la Hoja 39c Paso Flores. Provincia de Río Negro. Servicio Geológico Nacional. Boletín 167: 70 pp.  

Nullo, F., 1991. Cuencas extensionales del mesozoico inferior en el extremo sur de Sudamérica. Un modelo transpresional. Revista de la Asociación Geológica Argentina, 46 (1-2): 115-126.

Nuñez, E. and Cucchi, R. J., 1990. Estratigrafía del sector noroccidental del Macizo Nordpatagónico en los alrededores de Mencué, provincia de Río Negro. República Argentina. 11 Congreso Geológico Argentino. Actas II: 125-128.

Orchuela I. A., Ploszkiewicz, V. and Viñes, R., 1981. Reinterpretación estructural de la denominada “Dorsal Neuquina”. 8º Congreso Geológico Argentino. Actas 3: 281-293.

Orchuela I. A. and Ploszkiewicz, V., 1984. La Cuenca Neuquina. In: Geología y recursos naturales de la provincia de Río Negro. Relatorio (Editor: Ramos, V.). 9º Congreso Geológico Argentino. I (7): 163-188. S. C. de Bariloche.

Pankhurst, R.J., Rapela, C.W. and Fanning, C.M., 2001. The Mina Gonzalito gneiss: Early Ordovician metamorphism in northern Patagonia. III South American Symposium on Isotope Geology, Actas (CD), Pucón, Chile.

Pankhurst, R.J., Rapela, C.W. and Fanning, C.M. and Márquez, M., 2006. Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews xx (2006) xxx–xxx (En Prensa)

Ploszkiewicz, J. V., Orchuela I. A., Vaillard, J. C. and Viñes, R. F., 1984. Compresión y desplazamiento lateral en la zona de la falla Huincul, estructuras asociadas, provincia del Neuquen. 9 Congreso geológico Argentino. Actas II: 163-169. S. C. de Bariloche.

Rapela, C.W., Pankhurst, R.J., and Harrison, S.M., 1992, Triassic "Gondwana" granites of the Gastre district, North Patagonian Massif:  Trans. Roy. Soc. Edinburgh, v. 83, p. 291-304.

Ramos, V. A., 1975. Geología del sector oriental del Macizo Nordpatagónico entre Aguada Capitán y la Mina Gonzalito, prov. de Río Negro. Revista de la Asociación Geológica Argentina, 30 (3): 274-285.

Ramos, V. A., 1978. Estructura. In: Geología y recursos naturales del Neuquen. 7 Congreso geológico Argentino. Relatorio. 99-118. Buenos Aires.

Ramos, V. and Cortes, J. M., 1984. Estructura e interpretación tectónica. In: Geología y recursos naturales de la provincia de Río Negro. Relatorio (Ed: Ramos, V.). 9º Congreso Geológico Argentino I (7): 317 – 346. S. C. de Bariloche.

Ramos, V., 1984. Patagonia: ¿Un continente Paleozoico a la deriva?. IX Congreso Geológico Argentino. Actas III: 311-325

Ramos, V. A., 1986. Tectonostratigraphy, as applied to analysis of South African basins by H. De La R. Winter-Discussion. Transactions Geological Society South Africa, 89: 427-429.

Ramos, V. A., 1988. Late Proterozoic-Early Paleozoic of South America-A collisional history. Episodes, 11 (3): 168-174.

Rapalini, A. E. and Vizán, H., 1993. Evidence of intrapangaea movements in West Gondwana. Comptes Rendus XII International Congress on Carboniferous-Permian. I: 405-434. Buenos Aires.

Rapalini, A. E., 1998. Syntectonic magnetization of the mid-Paleozoic Sierra Grande Formation: Further constraints of the tectonic evolution of Patagonia.

Rapela, C. W. and Caminos, R., 1987. Geochemical characteristics of the Upper Paleozoic magmatism in the Eastern sector of the North patagonian Massif. Revista Brasileira Geociences. 17 (4): 535-543.

Rapela, C. W. and Pankhurts, R. J. 2002. Eventos tecto-magmáticos del Paleozoico Inferior en el margen Proto-Atlántico del sur de Sudamérica. 15º Congreso Geológico Argentino. Actas en CD. El Calafate.

Saini-Eidukat, B., Bjerg, E., Gregori, D., Beard, B. L. and Johnson, C. M., 1999. Jurassic Granites in the northern portion of the Somoncura Massif, Rio Negro Province, Argentina. XIV Congreso Geologico Argentino. Actas II: 175-177.

Saini-Eidukat, B., Beard, B., Bjerg, E. A., Gehrels, G., Gregori, D., Johnson, C., Migueles, N., and Vervoort, J. D. 2004. Rb-Sr and U-Pb age systematics of the Alessandrini Silicic Complex and related mylonites, Patagonia, Argentina. Geological Society of America Annual Meeting Abstracts with Programs. 36 (5): 222.

Saini-Eidukat, D. Gregori, E. Bjerg, N. Migueles, B. Beard,C. Johnson, J. Vervoort and G. Gehrels. 2005.Rb-Sr and U-Pb age systematics of the Alessandrini Silicic Complex and related rocks, El Cuy region, northern Patagonia, Argentina. Subbmited to Journal of South American Earth Sciences.

Sato, A. M., Tickyj, H. and Llambías, E. J., 1996. Geología de los granitoides aflorantes en el sur de la provincia de La Pampa, Argentina. 13 Congreso Geológico Argentino y 3 Congreso de Exploración de Hidrocarburos. Actas 5: 429-439.

Sellés Martínez, J., 1989. The structure of the Sierras Australes (Buenos Aires province, Argentina): An example of holding in a transpressive environment, Journal South American Earth Sciences. 2: 317-329.

Söhnge, A. P. G. and Hälbich, I. W. (Eds.), 1983. Geodynamics of the Cape Fold Belt. Geological Society of South Africa. Special Publication 12: 1-184.  

Tickyj, H. and Llambías, E., 1994. El gneiss milonítico del Cerro de Los Viejos (38° 28´S-64° 26´O), provincia de La Pampa, Argentina. ¿Evidencia de un corrimiento en el Carbónico inferior? 7 Congreso Geológico Chileno (Universidad de Concepción), Actas II: 1239-1243

Tickyj, H., Dimieri, L. V, Llambías, E. J. and Sato, A. M. 1997. Cerro de Los Viejos (38º 28´S-64º 26´O): cizallamiento dúctil en el sudeste de La Pampa. Asociación Geológica Argentina, Revista, 52(3): 311-321.

Tickyj, H., 1999, Estructura y petrología del basamento cristalino de la región centro sur de la provincia de La Pampa, Argentina. Tesis doctoral, 228 pp. Universidad Nacional de La Plata.

Tickyj, H., Llambías, E. J. and Sato, A. M., 1999a. El basamento cristalino de la región sur-oriental de la provincia de La Pampa: Extensión austral del Orógeno Famatiniano de Sierras Pampeanas. 14° Congreso Geológico Argentino, Actas I: 160-163.

Tickyj, H., Basei, M. A. S., Sato, A. M. and Llambías, E. J., 1999b. U-Pb and K-Ar ages of Pichi Mahuida Group, crystalline basement of SE La Pampa province, Argentina. II South American Symposium on Isotope Geology, Extended Abstract. 139-142, Carlos Paz, Argentina.

Tickyj H,. Llambías E. J and Melchor, R. N. 2002. Ordovician Rocks from La Pampa Province, Argentina.. In: Aspects of the Ordovician System in Argentina. (Ed: Aceñolaza, F. G.). Serie Correlación Geológica 16:. 257-266pp. Instituto Superior de Correlación Geológica. Tucumán.

Turner, J. C. M. and Baldis, B. A. J., 1978. La estructura transcontinental del límite septentrional de la Patagonia. 7º Congreso Geológico Argentino, Neuquen. Actas, (2): 225 – 238. Buenos Aires.

Uliana, M.A. and Biddle, K.T., 1987. Permian to late Cenozoic evolution of northern Patagonia: Main tectonic events, magmatic activity, and depositional trends, In: Gondwana Six: Structure, Tectonics, and Geophysics. (Ed.: McKenzie, G. D.). American Geophysical Union Geophysical Monograph 40: 271-286. Washington.

Uliana, M. A., Biddle, K. T. and Cerdán, J., 1989. Mesozoic extension and the formation of Argentine sedimentary basins. In: Extensional tectonics and stratigraphy of the North Atlantic margins. (Ed. Tankard, A. J. and Balkwill, H. R.). American Association of Petroleum Geologist, Memoir 46: 599-614.

Varela, R., Basei, M. A. S., Sato, A. M., Sita Jr., O., Cingolani, C. A. and Sato, K., 1998. edades isotópicas RB/Sr y U/Pb en rocas de Mina Gonzalito y Arroyo Salado. Macizo Nordpatagónico Atlántico, Río Negro, Argentina. X Congreso Latinoamericano de Geología y VI Congreso Nacional de Geología Económica, I: 71-76. Buenos Aires.

Vergani, G. D.; Tankard, A. J.; Belotti, H. J.; Welsink, H. J., 1995. Tectonic evolution and paleogeography of the Neuquén basin, Argentina. In Petroleoum basins of South America (Eds: Tankard, A. J.; Suárez, S.; Welsink, H. J.). American Association of Petroleum Geologists, Memoir 62: 383-402.

Vizán, H. and Rapalini, A. E., 1991. Evidencias de movimientos intrapangeanos durante el Paleozoico Tardio-Mesozoico Temprano. VI Congreso Geológico Chileno. Actas 179-183.

von Gosen, W. 2002. Polyphase structural evolution in the northeastern segment of the North Patagonian Massif (southern Argentina). Journal of South American Earth Sciences 15: 591-623.

von Gosen, W., 2003. Thrust tectonics in the North Patagonian Massif (Argentina). Implications for a Patagonia Plate. Tectonics, 22 (1): 5/1-5/33.

Wanke, A., Stollhofen, H., Lorenz, V. and Stanistreey, I. G., 1998. The pre-breakup evolution of a continental margin: Synsedimentary Karoo tectonics of the Huab-Casin in NW Namibia-Proceed. Gondwana 10. Journal African Earth Sciences. 27: 206 pp.

Windhausen. A., 1931. Geología Argentina. II Parte. Geología Histórica y regional del territorio argentino. 645 pp. Peuser, Buenos Aires.