MAGMATISMO GONDWANICO EN LA COMARCA NORDPATAGONICA,

CORDILLERA NEUQUINA Y SUR DE CHILE

RIONEGRO.jpg (1562866 bytes) CHUBUT.jpg (605702 bytes)  
EL MAGMATISMO CARBONICO EN EL SUR DE CHILE

Tomado de Katja Deckart, Francisco Hervé, C. Mark Fannin3, Valeria Ramírez, Mauricio Calderón, Estanislao Godoy, 2014. U-Pb Geochronology and Hf-O Isotopes of zircons from the Pennsylvanian Coastal Batholith, South-Central Chile. Andean Geology 41 (1): 49-82.

The Chilean Coastal Cordillera (33°-40°S) comprises a distinctive lithotectonic association representative of subduction zone processes. Critically important indicators of subduction are the late Paleozoic accretionary complex and the calc-alkaline Coastal Batholith. Although their origin within a subduction setting as exemplified for the Neogene Chilean active margin (e.g., Barazangi and Isacks, 1976; Hager and O’Connell, 1978; Jordan et al., 1983; Cahill and Isacks, 1992) seems straightforward (Hervé et al., 1988; Hervé et al., 2007a; Parada et al., 2007), the exact timing, nature and geodynamic significance of the Coastal Batholith in south-central Chile warrants further detailed investigations. The Coastal Batholith is a large and elongate composite intrusive body within slightly older metamorphic rocks of the accretionary prism (Hervé et al., 2013).

The sedimentary protolith of these country rocks was deposited and then shortly after buried to a depth of about 8 to 10 km (at about 3 kbar; Willner et al., 2005) where it was intruded by quartzdioritic to granitic magmas. Trench-ward shift of arc magmatism from an easterly location apparently occurred as Mississippian (early Carboniferous) detrital zircons are present in the sedimentary rocks of the accretionary prism (Hervé et al., 2013). This shift may be explained by global tectonic plate reorganization, or tectonic processes such as the steepening of the subducted oceanic slab due to subduction of older and colder oceanic lithosphere. Other possible geodynamic scenarios (e.g., subduction rollback), however, are explored.

In this study we report new SHRIMP U-Pb zircon ages on distinct portions of the largely north-south elongated Paleozoic Coastal Batholith and the first Hf-O isotope data for this batholith.
The aim is to present new aspects to the timing and petrogenesis of the batholith and magmatism along this portion of the proto-Pacific Gondwana margin. Our goal is to demonstrate that the Coastal Batholith was emplaced in a short period of time and shows different petrogenetic features compared to those other cordilleran batholiths which were formed along tens or hundred million years through multiple pulses of magmatism (cf. Hervé et al., 2007b).

 

2. Geologic Background
The Coastal Batholith of south-central Chile crops out to the east of the accretionary metamorphic complex between 33°S and 38°20’S, jumping at 40°S further east into the Principal Cordilleran range (Fig. 1).
The accretionary complex is subdivided into two metamorphic series with distinct P/T conditions (Godoy, 1970; Aguirre et al., 1972). The high P-low T Western and the low P-high T Eastern Series (Hervé, 1977; Willner et al., 2005) located to the north of 40ºS have Carboniferous depositional ages (Hervé et al., 2013). The Eastern Series shows a metamorphic overprint at around 300 Ma (Willner et al., 2005) which is related to the intrusive event of the Coastal Batholith on its eastern side. To the south of 40ºS the Western Series shows a Permian depositional age and Permian to Triassic age range for metamorphism (Duhart et al., 2001; Hervé et al., 2013). The Coastal Batholith is composed of calc-alkaline granitoid suites developed during late Paleozoic time, mainly between late Carboniferous and Early Permian (e.g., Cordani et al., 1976; Hervé, 1976; Hervé et al., 1988; Parada et al., 1991; Martin et al., 1999a; Ramírez, 2010). Also present in the Coastal Cordillera are gabbros and fayalite-bearing granites of Triassic age and classified as an anorogenic Atype granitoid suite (Vásquez and Franz, 2008) and some late to middle Jurassic two-pyroxene diorites, gabbros and hornblende-biotite tonalites (Godoy and Loske, 1988; Parada et al., 1991; Hernández, 2006). Furthermore, the subduction related plutonic event represented by the Subcordilleran Batholith in Patagonia, Argentina, indicates ages of the Triassic- Jurassic boundary (Rapela et al., 2003).


3. Previous age and isotopic data of the late Paleozoic Coastal Batholith
The Coastal Batholith intrusives 30 km north of the Quintay study area at Reñaca, yielded a Rb-Sr isochron age of 299±31 Ma (Hervé et al., 1988). At Valparaíso, 10 km to the south of Reñaca, a Rb-Sr isochron age of 296±5 Ma (Shibata et al., 1984) was obtained. South of Quintay, at Algarrobo, an age of 292±2 Ma and at Santo Domingo an age of 308±15 Ma was published by Hervé et al. (1988). Both represent ages of the northern part or the out cropping Coastal Batholith.

For the same dated samples 87Sr/86Sr whole rock initial ratios range between 0.70582 and 0.70605. Earlier, Cordani et al. (1976) presented a late Paleozoic age of 319±17 Ma (K-Ar recalculated) and a Juarssic age of 169±12 Ma (K-Ar recalculated) at Quintay.

The Paleozoic sample yields an initial 87Sr/86Sr isotope ratio of 0.7132, the Jurassic sample is less radiogenic with an initial ratio of 0.7038. Two more Paleozoic K-Ar ages are presented in Hervé et al. (1988) for Algarrobo intrusives on biotite and hornblende yielding 287±7 Ma and 296±7 Ma, respectively. At Quintay and Reñaca, two further Jurassic ages on biotite are published (Hervé et al., 1988), at 159±4 Ma and 156±1 Ma, respectively. An additional whole rock Rb-Sr age was likewise obtained yielding 167±14 Ma with an initial 87Sr/86Sr whole rock isotope ratio of 0.70412.

Furthermore, Gana et al. (1996) and Wall et al. (1996) published for the coastal area between Valparaíso and Cartagena several Middle to Late Jurassic K-Ar mineral ages on plutonic rock units. The Jurassic ages were attributed to thermal rejuvenation in rocks associated to the intrusion of Jurassic bodies.

A U-Pb zircon crystallization age of 299±10 Ma for the Pomaire pluton further east (Gana and Tosdal, 1996), inland of Quintay, confirms the strong presence of Carboniferous (Pennsylvanian) rocks in this area (Cochoa Unit after Rivano et al. (1993). Earlier, Godoy and Loske (1988) published two U-Pb dates on zircon fractions in two distinct localities at Quintay; dates are 290 Ma (tonalite) and 309 Ma (gneissic granite). Additionally, Gana and Tosdal (1996) obtained a U-Pb zircon age of 214±1 Ma (Late Triassic) from the Cartagena gneissic diorite unit at Punta Suspiro, directly north of San Antonio harbor, about 25 km south of Algarrobo.

Hervé et al. (1988) published a late Carboniferous, Pennsylvanian age for a coastal Santo Domingo granite sample, some 35 km south of Algarrobo. The Rb-Sr age is 308±15 Ma, with a whole rock initial 87Sr/86Sr isotope ratio of 0.70582. Further to the south, ca. 35 km northeast from the city of Concepción at the Dichato locality, a K-Ar biotite age of 306±6 Ma was published (Hervé et al., 1988). The same age (Rb-Sr isochron of 306±6 Ma) was obtained by Lucassen et al. (2004) in a diorite from the Cantera Giacomo, north of Concepción.

Additionally at Concepción a biotite K-Ar age of 215±4 Ma (Triassic; Hervé et al., 1988) was indicated 85 km southwest of the city of Los Angeles and 70 km from the coastline at the Traiguén locality, a biotite K-Ar age of 298±4 Ma was published (Hervé et al., 1988). Furthermore, in the same area, the Nahuelbuta Mountains National Park, Hervé et al. (1988) obtained a biotite K-Ar age of 284±5 Ma. Glodny et al. (2008) present two-point Rb-Sr ages of 286.3±4.2 Ma (biotite-feldspar age) and 306.8±4.5 Ma (feldspar-muscovite age) on two intrusive igneous rocks of the same Nahuelbuta National Park region. Initial 87Sr/86Sr ratios (ranging between 0.7057 and 0.7098) and eNd values (between -2 and -4) were obtained for granitoids and enclaves in the Santo Domingo Complex (Parada et al., 1999).

Similar enriched isotopic compositions were determined for granitoids of ca. 294 Ma (Hervé et al., 1988) from Nahuelbuta with initial 87Sr/86Sr ratios varying in the range of 0.705 to 0.715 and eNd values in the range of -2.5 and -7.5 (Lucassen et al., 2004). These results indicate a mixing of at least two isotopically different lithospheric sources, with crust similar in composition to the exposed metasedimentary host rocks (Lucassen et al., 2004). In the high Andes of Central Chile, Pineda and Calderón (2008) established through U-Pb zircon data a Carboniferous age of 328.1±2.8 Ma for a biotite-muscovite granite (Los Molles granite) and a Permian age of 294.2±2.3 Ma for a hornblendebiotite tonalite (El Pangue Tonalite), which belongs to the Elqui Limari Batholith (30-31ºS). Willner et al. (2008) presented U-Pb zircon ages of 326±12 Ma and 294±4 Ma, Carboniferous and early Permian times, for two leucogranite pebble ages from the scarcely developed coastal accretionary prism between 31°-32°S. These authors indicate that initial eHf signatures on the same zircons range between +3.6 to -3.1, respectively.

The crustal residence times are of 1.3-0.97 Ga, Meso- to Neoproterozoic, with slightly older model ages for the somewhat younger leucogranite samples. Furthermore, they suggest that Carboniferous samples are either the result of mixing of juvenile, mantle-derived magma with older crust or of recycling of crustal material distinct from the older magmatic products of the coastal accretionary system. It is noteworthy that Martin et al. (1999b) dated late Paleozoic to Early Jurassic intrusive, volcanic and sedimentary rocks in the El Indio region close to the Argentinean border at 29-30°S. They interpreted their occurrence to be related to extensional processes that followed the cessation of Carboniferous to early Permian subduction along the western edge of Gondwana.

O

On the basis of our new data, the Pennsylvanian Coastal Batholith in south-central Chile is shown to have been emplaced in a very short period of time (20 Ma) and to be relatively homogeneous in crystallization age and both Hf and O isotopic compositions along 800 km length, regardless of rock types which vary from quartz diorite to granite.

After a 150 Ma magmatic lull, Jurassic quartziferous gabbros of much more primitive isotopic composition were emplaced through the Paleozoic rocks of the Coastal Batholith in the northern study area. This evolution is very different to what is observed in the Mesozoic to Cenozoic batholiths in northern Chile (Dallmeyer et al., 1996) and in the South Patagonian batholith (Hervé et al., 2007b) which are typical Andean batholiths, the last with large age range -spanning from 155 to 5 Ma- and greater variation in Hf and O isotopic compositions (Fanning et al., 2010).

This suggests a relative homogeneous source with a significant continental crust component for these magmas. The two stage Depleted Mantle model age calculations all yield Mesoproterozoic ages which indicate that the source(s) for the magmas from which the zircon crystallized have had a significant residence time in the crust. If this was the case, then the magmatic arc would have been formed on continental crust (d18O >5.3±0.6; Fig. 6), beyond the backstop of the accretionary complex to the west.

This suggests that the Eastern Series, which the batholiths intrudes, was deposited over this continental crust or either has been tectonically transported from the west to its present position over the western edge of continental crust.

Alternatively, part or all of the melting crustal material could correspond to sediments transported deep into mantle wedge by the subducted crust, as modeled by Gerya and Meilick (2011). The fast extinction of the arc, which appears to have lasted less than 20 Ma, was probably the consequence of changes in the subduction parameters, which displaced the melting conditions of the underlying crust from the site of the Coastal Batholith to the east.

These changes could be related with the contraction of the Rheic Ocean that culminated with the collision of NW Gondwana and south-eastern Laurentia at ca. 320 Ma (McElhinny et al., 2003). It is interesting to consider that during the span in which the southcentral Coastal Batolith was emplaced Gondwana remained in a relative stationary position (Oviedo and Vilas, 1984) in contrast with fast movements and rotations before and after that time (Geuna et al., 2010).

The Coastal Batholith was eroded to a similar level as the present one, before deposition of the Late Triassic (Norian) sedimentary rocks (Nielsen, 2005). Surprisingly, detrital zircon derived from the batholith are not found as constituents of the Permian accretionary prism which constitute the Western Series south of 38°S (Hervé et al., 2013), a probable indication that significant portions of the accretionary complex do not crop out.

It is interesting to note that the evolution of the accretionary prism continued until the Triassic, when Late Triassic plutonic bodies beside some locally restricted post-subduction A-type granitoids intruded into the Western Series (Vásquez and Franz, 2008).

 

 

 

EL MAGMATISMO CARBONICO DE LA CORDILLERA NEUQUINA Y DE LA COMARCA NORDPATAGONICA

Tomado de: R.J. Pankhurst a, C.W. Rapela, C.M. Fanning, M. Márquez, 2006. Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews 76: 235–257.

I-type granitoids of Carboniferous to Permian age form the core of the Coastal Cordillera of Chile from 33° to 38°S where they are seen in the Cordillera de Nahuelbuta (Fig. 1). Southeasterly extension of this belt and its metamorphosed envelope has been suggested, as far as the Piedra Santa complex near the northwestern boundary of the North Patagonian Massif (Franzese, 1995), but no supporting geochronology or geochemistry are available and until now it could not be traced any further.

However, our results demonstrate the existence of a 120-km-long belt of Early Carboniferous I-type granodiorites in the eastern North Patagonian Massif, along the Cordón del Serrucho, between San Carlos de Bariloche and El Maitén (41–42°15′S) (Fig. 2). Two samples yield well defined Early Carboniferous (~Visean) crystallization ages of 323±3 and 330±4Ma; a sample of the El Platero tonalite in the Río Chico, about 50 km to the southeast, gave a comparable age of 329±4Ma (Fig. 6a). A two-point conventional 238U–206Pb zircon age of 321±2Ma has been independently reported for a sample from the same locality as MOS-043 (Varela et al., 2005).

All three samples analysed, which are representative of continuous outcrop, are foliated metaluminous hornblende-biotite granitoids with low abundances of lithophile trace elements, rare earth element (REE) patterns typical of Andino-type calcalkaline arc rocks, positive εNdt values (+0.1 to +2.8), and low initial 87Sr/86Sr (0.7034–0.7046) indicating a long-term light-REE depleted source such as the upper mantle (Table 1). Other authors have previously suggested Carboniferous magmatism in the western areas of the North Patagonian Massif, but mostly on the basis of imprecise Rb–Sr whole-rock errorchrons or K–Ar geochronological data (see Varela et al., 2005 for a summary).

Two previously undated granite bodies in the southwestern North Patagonian Massif have yielded Mid Carboniferous (Serpuhkovian/Bashkirian) crystallization ages: 314±2Ma from Paso del Sapo and 318± 2Ma from Sierra de Pichiñanes (Figs. 2 and 6b). These are both peraluminous S-type garnet-bearing leucogranites with high SiO2 contents, strongly depleted heavy- REE patterns, high K2O/Na2O ratios, unradiogenic εNdt values (−5.0 to −6.0 on four samples) and relatively high initial 87Sr/86Sr (0.7078–0.7098) indicative of generation by upper crustal melting (Table 2).

They have multistage Sm–Nd model ages of 1500Ma that could represent the age of their deep crustal source region. These results show that in the southwestern part of the North Patagonian Massif a short-lived episode of subduction was followed by crustal anatexis during the Mid Carboniferous. The Cordón del Serrucho runs approximately N–S (Fig. 2), but the equivalence of the El Platero tonalite suggests that the arc was orientated more NW–SE, and the S-type granites occur somewhat to the northeast of this trend line. Although the wider distribution of I- and S-type granites in Patagonia is not clear, and the lack of outcrops may unfortunately prevent further elucidation, both are typically emplaced in the overriding plate above the subduction zone before and during plate collision, respectively, and their disposition thus strongly suggests subduction of an oceanic plate from the southwest.

RANGO DEL MAGMATISMO CARBONICO RECONOCIDO POR DECKART ET AL., (2014), azul, mayoritariamente en Chile y PANKHURST ET AL, (2008), rojo, en Argentina y RELACIONES ESTABLECIDAS POR MARCOS ET AL (2018) PARA LA CUENCA DE CUSHAMEN. (El tope superior de Cushamen está dado por la intrusión de granitos Pérmicos con 298 Ma

 
MAGMATISMO PERMICO DE LA COMARCA NORDPATAGONICA

The North Patagonian Massif is characterized by large outcrops of Permian granitic rocks that was divided by Gregori et al. (2020) in three extensive magmatic belts. Their origin and evolution have been debated for a long time and there is still no consensus on these issues.

The northeastern Gondwana magmatic belt (Fig. 1) strikes N300°-N340° for more than 200 km between the Atlantic coast and the Estación Falkner locality (Río Negro Province).

The northwestern Gondwana magmatic belt (Fig. 1) strikes N70°-N93° for more than 300 km between Arroyo Pichi Leufu and the Planicie Baja area (Río Negro Province).

The southwestern Gondwana magmatic belt (Fig. 1) of the North Patagonian Massif strikes N340°-N310° for more than 250 km from the head of the Arroyo Pichi Leufu to Sierra de los Pichiñanes (Chubut Province).

 

figure 1c mencue.jpg

Geological map showing the configuration of the northern Patagonia and surrounding areas. Several E–W and NW–SE-oriented structures at the latitude of the Río Colorado-Río Negro define the
northern border of the North Patagonian Massif. The Río Limay and the Comallo-Gastre and Guanacote lineaments define its NW, SW and SE borders.

The supposed borders of the three Gondwana magmatic belts are indicated in yellow (Gregori et al. (2020)

 

 

The northeastern Gondwana magmatic belt

The northeastern Gondwana magmatic belt strikes N300°-N340° for more than 200 km between the Atlantic coast and the Estación Falkner locality (Río Negro Province). Its NW part reaches 100 km at its widest point. One important part of the belt is covered by Jurassic rhyolitic ignimbrites and Tertiary basaltic rocks, so the real amount of granitic rocks is unknown. The outcrops are small and isolated, but several units were studied petrologically, geochemically and geochronologically. Undeformed and solid-state deformed bodies are observed.

Las areas 1 a 7 de la figura de abajo se ubican en esta faja.

Area 1: Zona Sierra Grande
Area 2: Zona Los Berros-Peñas Blancas
Area 3: Ao Pailemán- Ao. Tembrao

Area 4: Laguna Indio Muerto , Estación Munsters

Area 5: Salinas del Gualicho

Area 6: Ao. Nahuel Niyeu, Ao Treneta

Area 7: Ao Yaminué-Estación Falkner

Los cuerpos intrusivos de las areas 1, 2, 3, 4 y 5 fueron agrupados bajo el nombre de Complejo Plutónico Pailemán

INFORMACION GENERAL SOBRE EL COMPLEJO PLUTONICO PAILEMAN:

INCLUYE LAS FORMACIONES ARROYO PAILEMAN, GRANODIORITA ARROYO TEMBRAO, EL PLUTON LAGUNA MEDIA, PLUTON LA VERDE, PLUTON PEÑAS BLANCAS, ETC

 

GONDWANICO SOMONCURA

 

1 Sierra Grande: Plutón Laguna Medina

wpe17.jpg (38273 bytes)

laguna medina

La Granodiorita Laguna Medina se caracteriza por su homogeneidad litol ógica, lo que está en parte condicionado por la escasez y discontinuidad de afloramientos. Se trata de granodioritas con biotita, anfíbol y titanita, que exhiben xenolitos de esquistos cuarzo-micáceos, posiblemente pertenecientes a su roca de caja no expuesta. El muestreo de ésta unidad estuvo restringido a lo largo del tendido de un gasoducto al oeste de Laguna Medina y algunos morros aislados en los sedimentos de la laguna. En ambos cuerpos las texturas granosas magmáticas primarias están mejor preservadas en sectores alejados de las fajas de cizalla. En las zonas de mayor deformación el cuarzo presenta evidencias de deformación subsólida de alta temperatura, como microestructuras con patrón en tablero de ajedrez. Otras evidencias de deformación intracristalina son extinción ondulosa, láminas de deformación y bordes irregulares a lobulados a partir de procesos de migración en los bordes. La deformación intracristalina en feldespatos se evidencia en plagioclasas por maclas de albita con combamientos o escalonamientos y en microclino por maclas en enrejado distorsionadas. Además los feldespatos presentan reemplazo parcial por sericita-muscovita, carbonatos y prehnita. La biotita se exhibe combada, con extinción ondulosa y bordes desflecados, llegando en las fajas de cizalla a un completo reemplazo por clorita y carbonatos "tipo sandwich", agregados de epidoto pulverulento y quistes prehníticos, que indican metamorfismo en facies esquistos verdes. En cuanto al anfíbol varía entre fresco y casi totalmente reemplazado por una asociación de clorita + carbonatos + prehnita + albita (¿). Minerales accesorios comunes son titanita, apatita, circón, allanita y opacos.
Las edades isotópicas obtenidas previamente en granitoides de Sierra Grande fueron comunicadas por Halpern et al. (1970), Halpern (1972), Varela et al. (1997) y Pankhurst et al. (2006) y son discordantes entre sí.
Las dataciones producidas por Halpern (1970) y Halpern et al. (1972) son Rb-Sr en biotita (Ri 87Sr/86Sr asumida) e isocrona roca total, respectivamente, en ambos casos con edad de 252 ± 5 Ma. Las edades comunicadas por Varela et al. (1997) fueron obtenidas por isocronas (errorcronas) Rb-Sr en roca total y diferenciaron dos unidades (plutones ?). El Granito Mina Hiparsa proveyó un valor de 363 ± 57 Ma, Ri 87Sr/86Sr 0,7110 ± 0,0022 y la Granodiorita Laguna Medina 318 ± 28 Ma, con Ri 87Sr/86Sr 0,7070 ± 0,0004. El análisis de esos datos permite sugerir que si bien los errores de las edades son significativos, marcan una tendencia cronológica hacia el Paleozoico Superior y las relaciones isotópicas iniciales de Sr indicarían procedencia desde distintas fuentes o diferente evolución en su permanencia en la corteza. Por último, Pankhurst et al. (2006) informaron una edad U-Pb SHRIMP en circones de un granitoide colectado en proximidades de Mina Hiparsa, que arrojó un valor de 476 ± 6 Ma, Ordovícico Inferior.

GEOLOGÍA Y GEOCRONOLOGÍA Rb-Sr DE GRANITOIDES DE SIERRA GRANDE, PROVINCIA DE RÍO NEGRO
Ricardo VARELA, Kei SATO, Pablo D. GONZÁLEZ, Ana M. SATO y Miguel A.S. BASEI Revista de la Asociación Geológica Argentina 64 (2 ): 275 - 284 (2009)

 

2 Los Berros-Peñas Blancas: Plutón La Verde, Plutón Peñas Blanca, Plutón La Laguna

wpe12.jpg (103579 bytes)

la verde

El Plutón La Verde fue agrupado por Giacosa (1993) como integrante del Complejo Plutónico Pailemán del permo-triásico. Constituye un cuerpo ovalado cuyo eje se prolonga en dirección N-S. Presenta sus mayores afloramientos al este de Los Berros mientras que en su sector meridional, cerca de Arroyo Ventana, son más escasos. Hacia el Norte está cubierto por flujos ignimbríticos de la Formación Marifil y por basaltos de la Formación Somún Curá (Busteros et al . 1998). Posee numerosos tabiques y pendants de sus rocas de caja, como las milonitas porfiroclásticas graníticas de La Laguna y las metamorfitas del Complejo Mina Gonzalito (Giacosa1993). Cabe destacar la presencia de inclusiones de un granito porfírico no deformado, que posiblemente sea el protolito de las milonitas del plutón La Laguna. La facies más abundante del plutón La Verde es una granodiorita gris oscuro, biotítica-horblendífera a horblendífera-biotítica, de textura equigranular con variedades porfíricas en el borde de contacto con la caja. Este cuerpo carece en general de deformación pervasiva, por lo que ha sido agrupado dentro de los granitos no foliados del Complejo Plutónico Pailemán (Grecco y Grégori 2011), aunque en algunos sectores exhibe fajas de cizalla discretas tipo S-C (Busteros et al 1998). Además presenta numerosos enclaves microgranulares máficos gabro-dioríticos. La granodiorita está intruida por una facies posterior microgranítica biotítica rosada. La granodiorita está compuesta por cuarzo, plagioclasa (andesina An30) y ortosa y microclino. Entre los minerales máficos se destacan biotita y hornblenda. Desde el punto de vista mineralógico las rocas se ubican dentro de los granitos calcoalcalinos de arco o ACG de Barbarin (1999), y granitos Tipo I asociados a subducción de Chappelly White (1974).
Las facies previamente mencionadas se hacen evidentes en el diagrama de clasificación normativo Ab-An-Or (O'Connor 1965, modificado por Barker 1979) donde a partir de datos geoquímicos de elementos mayoritarios las muestras definen estos dos grupos distintivos los granitos que poseen composiciones alcalino-cálcicas y las granodioritas El ASI (Aluminium Saturation Index) de Shand(1943) para las granodioritas varían entre 0,93 y 1,04 y para los granitos entre 1,00 y 1,18. Las granodioritas y granitos menos evolucionados son metaluminosos, mientras que los granitos más diferenciados son peraluminosos.
Las granodioritas poseen una relación (La/Yb) indicando mayor fraccionamiento en las rocas más evolucionadas.

En el diagrama de discriminación tectónica Y vs Nb (Pearce et al 1984) las muestras plotean dentro del campo de arco volcánico y granitos sin-colisionales. Se practicaron análisis U/Pb SHRIMP en circones pertenecientes a este plutón en los laboratorios del CPGeo, Instituto de Geociencias (Univ. de San Pablo, Brasil). Se obtuvo una edad concordia de 261,1 ± 2,0 Ma(1) con MSWD de 0,14 que se interpreta como la cristalización magmática del Plutón La Verde. El dato K-Ar en biotita de 253± 9 Madel mismo cuerpo (Busteros et al, 1998) es algo más joven y puede interpretarse como una edad de enfriamiento post-cristalización magmática. El dato de 261 Ma del plutón La Verde se encuentra dentro del rango de edades pérmicas de los otros cuerpos plutónicos del Complejo Pailemán en la región, como el Granito Arroyo Pailemán (Rb/Sr268±3Ma, Grecco et al 1994) y la Granodiorita Arroyo Tembrao 39Ar/40Ar,(Ar 266,1±1,5 Ma, Grecco y Grégori2011). Asimismo es más joven, aunque dentro del Pérmico, que el plutón Laguna Medina (U-Pb circón 291,2 ± 5,6 Ma, Varela et al 2008) de la región de Sierra Grande. Las edades modelo TDM Sm/Nd calculadas por el métodomultiestadio de DePaolo et al 1991) son meso-a paleoproterozoicas(1,2-1,8 Ga) para los granitos y paleoproterozoicas (1,6-1,8 Ga) para las granodioritas. Por el momento, y hasta no contar con más datos radimétricos, las edades del Complejo Pailemán indican unclímax de actividad magmática Gondwánica en el Pérmico, en sentido amplio.

 

3 Ao Pailemán- Ao. Tembrao

 

 

 

D

 

wpe15.jpg (71657 bytes)

paileman

Grecco, L.E., Gregori, D. A., Rapela, C.W., Pankhurts, R. and Labudía, C.H. 1994. Peraluminous granites in the Northeastern Sector of the North Patagonian Massif". Symposium on Structural and Compositional Segmentation of the Andes. Concepción, Chile. VII Congreso Geol. Chileno, Actas II, IUGS Project 345. 1354-1359.

Grecco, L. E. and Gregori, D. A., 2000. The Arroyo Pailemán Granite Stock: A peraluminous S-type intrusive, NPM, Argentina. Profil, Band 18. XVII Simposio sobre la Geología de Latinoamérica, Sttutgart, Alemania

Grecco, L. E. y Gregori, D. A., 2011. Geoquímica y geocronología del Complejo Plutónico Pailemán, Comarca Nordpatagónica, Provincia de Río Negro. XVIII Congreso Geológico Argentino, Neuquén. Simposio S1: La Patagonia en el contexto geodinámico de Gondwana

 

4 Laguna Indio Muerto , Estación Munsters: Plutón La Malena, Plutón Mina San Martín

valcheta

 

A

 

CARACTERIZACIÓN DEL PLUTÓN SAN MARTÍN Y LAS MINERALIZACIONES DE WOLFRAMIO ASOCIADAS, DEPARTAMENTO VALCHETA, PROVINCIA DE RÍO NEGRO. 2009. Martín Ricardo GOZALVEZ. Revista de la Asociación Geológica Argentina 64

(3 ): 409 - 425

 

 

valcheta

 

5 Salinas del Gualicho:

COMPLEJO PLUTÓNICO PAILEMÁN
Granitos, pórfidos graníticos y granitos con cataclasis

Fue definida por Giacosa (1993) para reemplazar al “Granito sierra Pailemán” de Stipanicic y Methol (1972), debido a que “en primer termino sólo algunos de los stocks son graníticos y en segundo lugar la sierra de Pailemán esta constituida por rocas volcánicas”.
Las primeras consideraciones sobre estas rocas, fueron hechas por Wichmann (1926) quién las incluyó en su basamento cristalino; Croce (1952) y Navarro (1960) hicieron estudios de mayor detalle y Brodtkorb y Brodtkorb (1969), Gelós y Hayase (1969) y Sesana (1968) realizaron investigaciones sobre la mineralización emplazada en dichas rocas. Posteriormente otros trabajos fueron efectuados por Giacosa (1994, 1997) y Greco et al. (1994).


Distribución areal y relaciones estratigráficas
Esta unidad aflora en una faja discontinua que se extiende conformando el borde oeste de la extensa lomada que tiene su máxima expresión en el cerro Chenque. Esta faja corre desde la angostura occidental de la salina del Gualicho, hasta los puestos de Funes y Betbader.
En este último lugar puede observarse como los granitos intruyen a las metamorfitas de la Formación Nahuel Niyeu, con delgadas zonas donde se encontraron xenolitos de la roca metamórfica, desde 2-3 cm hasta colgajos (roof-pendants).
También hay un pequeño asomo al norte del puesto Lucero, formando una lomada pequeña de no más de 50 m de ancho intruyendo a la Formación Nahuel Niyeu, pero con los contactos muy cubiertos por detritos. Al nordeste del puesto Piris, a unos 3 km, se observan unas venas graníticas subparalelas que penetran a la Formación Nahuel Niyeu y constituyen la cresta de una pequeña lomada.
Al sur de la localidad de Las Grutas, sobre la costa, hay un pequeño asomo de granitos que se introduce en el mar como un cabo rocoso, pudiéndoselo ver hasta unos 100 m de la costa con la marea baja.


Litología
La unidad está compuesta por granitos de grano fino a mediano, que pasan en algunos sectores a pórfidos graníticos y granitos con cataclasis. Su color varía de rosado a pardo, tienen textura granosa alotriomorfa y están compuestos por cuarzo, feldespato potásico, plagioclasa y biotita, en ese orden de abundancia, acompañados por apatita, circón y escasos opacos. En algunos sectores presentan textura gráfica y mirmequítica. Los granitos con evidencias de cataclasis tienen textura alotriomorfa inequigranular, con el cuarzo fracturado tipo mortero y feldespato con textura gráfica. El mineral máfico es hornblenda.


Edad
Las relaciones estratigráficas de esta unidad son escasas y la única observable en casi todos los afloramientos es la relación de intrusión con la Formación Nahuel Niyeu. Sólo en la salina del Gualicho se advierte que las vulcanitas del Complejo Volcánico Marifil cubren los granitos.
Por su similitud y modo de emplazamiento se correlaciona con los cuerpos de la sierra de Pailemán y alrededores de Sierra Grande y Valcheta.
Numerosas dataciones se realizaron en los cuerpos de las zonas mencionadas. Linares (1979) obtuvo edades radimétricas en el granito de mina San Martín de 230 Ma (Triásico medio) y Halpern et al. (1971) para los granitos de Valcheta, sierra Grande y sierra Pailemán valores entre 230-270 Ma (Triásico medio - Pérmico inferior).
Giacosa (1997) citó otras dataciones en el área, todas dentro del intervalo 275-235 Ma (Pérmico inferior - Triásico medio). Busteros et al. (1998) mencionaron para el Plutón Peñas Blancas una edad de 197±8 Ma (K/Ar sobre biotita).
Stipanicic y Methol (1972) obtuvieron cifras de alrededor de 232±4 Ma (Triásico medio) para rocas graníticas del Macizo de Somún Curá, con las cuales se correlaciona también estas rocas.
En el Gran Bajo del Gualicho una datación K/Ar efectuada sobre un granito, al noroeste del puesto de Aldo Betbader, dio 250±10 Ma (límite entre el Pérmico y el Triásico; según Lizuain y Sepúlveda, 1978).
Todo este conjunto de edades radimétricas, con un gran agrupamiento en el Pérmico - Triásico, coincide con lo expresado por Caminos (1996) para lo que él llamó Complejo Plutónico Navarrete. Además hace la salvedad de la existencia de algunos cuerpos con edades correspondientes al Carbonífero.
También existe una datación K/Ar de una muestra tomada en el afloramiento del Gran Bajo del Gualicho, en un microleucogranito ubicado al oeste del puesto de Aldo Betbader, que reveló una cifra de 320±10 Ma (Carbonífero inferior alto).
Este dato guarda coincidencia con las referencias que realizaron Stipanicic y Methol (1972) sobre la existencia de granitos carboníferos en el Macizo Nordpatagónico citando las dataciones del cerro Moro (315±10 Ma, Carbonífero superior), Valcheta. (335±16 Ma, Carbonífero inferior) y la mina Gonzalito (315±25 Ma, Carbonífero superior).
Atendiendo a toda la información recogida surge que la mayor concentración de datos corresponde al Pérmico - Triásico, posiblemente vinculados con la fase diastrófica Sanrafaélica, pero como no ha sido posible separar estas rocas de las que evidencian edades carboníferas, se considera necesario asignar a la unidad al Permico-Triásico, dejando abierta la posibilidad de que se llegue a alcanzar el Carbonífero para algunos cuerpos.

 

 

6 Ao. Nahuel Niyeu, Ao Treneta

 

Complejo Plutónico Navarrete

yaminue.gif (824915 bytes)

mapa.jpg (446945 bytes)

 

 

7 Ao Yaminué-Estación Falkner:

 

 

 

 

 

 

FAJA MAGMATICA GONDWANICA NOROESTE

La faja magmática Gondwaánica Noroeste tiene rumbos entre N70° y N93° y se extende por mas de 300 km entre el Arroyo Pichi Leufu y Planicie Baja area (Río Negro Province). En su parte oeste (Piedra del Aguila-Mencué- Arroyo Pichi Leufu), las rocas graníticas forman vastos y continuos afloramientos ocasionalmente cubiertos por volcanitas jurásicas. En este sector tiene un ancho de mas de 130 km. Fueron publidaos varios trabajo por Gregori y colaboradores donde se muestra la distribucion, litologia, quimica edad y origen de las rocas. En la parte central de la faja (La Esperanza) se realizaron varios trabajos de detalle que indican litologia quimica, edad y origen de las rocas. El extremo este de la faja tambien fue estudiada por Gregori y colaboradores. Otros sectores de la faja no fueron estudiados.

Las areas 8 a 16 de la figura de abajo se ubican en esta faja.

Area 8: Zona Cañadón Cullún Leufú, Sierras Blancas, Cañadón Mallín Chico, sector E Sierra de Queupu Niyeu

(trabajos regionales, Cucchi y colaboradores. hoja geológica Los Menucos

Mapeo regional de Gregori y colaboradores no publicados)

Area 9: Zona Cañadón Soledad, Cañadón El Loro, Caita Có, Cerro Pangaré

(mapeos regionales de carta geológica General Roca y varios trabajos de Gregori y colaboradores publicados)

Area 10: Zona La Esperanza, Loma Blanca, Cerro Pillahuinco Chico

(trabajos regionales, Cucchi y colaboradores. hoja geológica Los Menucos. trabajos de detalles de LLambías y otros, Dopico y otros)

Area 11: Zona Chasicó, Palenqueniyeu, Colán Conhué

(trabajos regionales, Cucchi y colaboradores. hoja geológica Los Menucos y de detalle de Dalla Salda, Cingolani y otros. Mapeos regionales de Gregori y colaboradores no publicados)

Area 12: Zona Cañadón Michihuao, Cañadón Quili Malal, Lonco Vaca

(Mapeos regionaled de Cucchi y colaboradores, hoja geologica Piedra del Aguila. Trabajos de detalle de Gregori y colaboradores no publicados)

Area 13: Zona de Cañadón Quili Mahuida, Cañadón La Blancura, Cañadón Mencué, Cañadón Curru Mahuida

Mapeo regional de Cucchi y colaboradores. Hoja Piedra del Aguila. Trabajos de detalle publicado por Gregori y colaboradores, ver mas abajo

Area 14: Zona Cañadón Pilahue, Cañadón Cura Lauquén, Cañadón Fita Ruin, Laguna Blanca

Mapeo regional de Cucchi y colaboradores. Hoja Piedra del Aguila. Trabajo de detalle publicado por Gregori y colaboradores, ver mas abajo

Area 15: Zona Cañadón Chileno, Paso Limay

Mapeo regional de Cucchi y colaboradores. Hoja Piedra del Aguila. También Nullo, 1979. Trabajo de detalle en prensa por Benedini y colaboradores.

Area 16: Zona de Comallo-Neneo Ruca

(Mapeos regionales de Gonzalez y colaboradores, hoja geologica Ingeniero Jacobacci. Trabajos de detalle de Barros y colaboradores en prensa)

     

 

 

GONDWANICO SOMONCURA

 

 

8 Cañadón Cullún Leufú, Sierras Blancas, Cañadón Mallín Chico, sector E Sierra de Queupu Niyeu

Las rocas graniticas de este sector no fueron estudiadas en detalle pero posiblemente correspondan al Complejo Plutónico La Esperanza y se ubican en la carta Los Menucos

 

menucos

 

 

 

9 Cañadón Soledad, Cañadón El Loro, Caita Có, Cerro Pangaré

The Caita Có granite


The Caita Có granite is a medium- to coarse-grained deformed sheet-like mass (nearly 300 km2) cropping out between Estancias Pangaré and La Seña, and the Sierra Blanca de la Totora Lineament to Patu Có Lineament. The body includes granodioritic, granitic and porphyritic facies, granitic dikes and aplitic veins.
The granodioritic facies crops out as small, scattered patches 3 km north of Estancia La Seña. They display a granular, weakly foliated texture composed of twinned plagioclase, hornblende, quartz, K-feldspar and epidote. The granitic facies represents most of the body, whereas the porphyritic facies is common near the La Seña mylonite. The granitic facies appears as small rounded hills in a nearly flat area. It commonly contains centimeter long xenoliths of micaceous schists.
The porphyritic facies is small sub-parallel NWeSE trending hills north of Estancia La Seña. Minor outcrops are located north of Estancia Pangaré. K-feldspar phenocrysts (3 mm up to 5 cm long) are wrapped by granular zoned plagioclase, quartz, Kfeldspar, biotite, muscovite and titanite. Perthites and myrmekites are commonly located at the foliation-parallel borders of feldspar phenocrysts, indicating important grain-boundary diffusion processes, probably enhanced by the presence of interstitial fluids during the deformation.
Westwards of the “large” porphyritic facies, north of Estancia Pangaré there is a medium-size grain porphyritic facies, which consists of twinned plagioclase, perthitic K-feldspar (1 cm long) and quartz phenocrysts immersed in an optically oriented matrix defining a moderate foliation. Myrmekitic textures are common in the borders and cores of K-feldspar. Scarce biotite and muscovite cut the foliation. In some areas, K-feldspar-rich leucogranitic foliated dikes, 10 cm wide, cut the medium-size grained porphyritic facies. These dikes are folded, disrupted by strike-slip faults and cut by dikes of similar composition. Nearly all have a N310e320 strike. The dip varies between 45 SW/NE to vertical. Foliated and unfoliated granitic and aplitic dikes, striking N310e325 and up to 15 m wide, cut the other facies.

ca c cai caita

Se ubica en la carta General Roca

ROCA

 

10 Zona La Esperanza, Loma Blanca, Cerro Pillahuinco Chico:

Complejo Plutónico Volcanico Dos Lomas , Complejo Plutónico La Esperanza

Complejo Plutónico La Esperanza y se ubican en la carta Los Menucos

Afloramientos de La Esperanza.gif (855268 bytes)

Mapa La esperanza.gif (411483 bytes)

Mapa.gif (53744 bytes)

ZONAS 11, 12, 13, 14 Y 15 SE UBICAN EN LA CARTA PIEDRA DEL AGUILA

PIEDRA DEL AGUILA

IMAGEN SATELITAL DONDE SE UBICAN LAS ZONAS 11, 12, 13 Y 14

wpe6.gif (897489 bytes)

 

11 Chasicó, Palenqueniyeu, Colán Conhué: Granito Chasico

 

 

 

 

gr mencue.jpg (144583 bytes)

Mencue Chasico.gif (105553 bytes)

 

12 Zona Cañadón Michihuao, Cañadón Quili Malal, Lonco Vaca: GRANITO PALENQUENIYEU

Núíicz y Cucchi (1985) propusieron el nombre Granito Palenqucniyeu para los granitos biotítico- hornbléndicos portadores de inclusiones dioríticas, aflorantes al este de Mencué, en la zona de La Angostura, Palenqueniyeu, Carriyegua, Lonco Vaca y Planicie del Mirador.
Cucchi (1992) llamó Granito Cayupil a granitos de características semejantes ubicados al noroeste y oeste de la laguna Blanca, diferenciándolos por la mayor penetración pegmatítica y aplítica Sin embargo Gregori et al (2020) explico que las relaciones propuestas por estos autores no pueden ser reconocidas en el campo y los incluyó en el Batolito de Mencué bajo en nombre de GRanodiorita Cura Lauquén por la abundancia de afloramientos en dicha area..


El Granito Palenqueniyeu tienen una amplia distribución areal; afloran entre Palenqueniyeu y La Angostura y siguen hacia el norte por el cañadón Michihuao.
Son granitos de grano medio a grueso, color gris rosado, con motas negras dadas por la concentración de los mafitos. Portan inclusiones gris
obscuras, de grano fino y aspecto ígneo cuya composición es monzodiorítica y diorítica, así como también de rocas metamórficas, en especial esquistos micáceos; las primeras son los típicos enclaves, de formas redondeadas y elipsoidales, mientras que las segundas son más
achatadas y con esquistosidad y/o bandeado. En general ninguna de ellas supera los 20-25 cm de diámetro máximo.

En el sector más austral de los asomos de este granito, el grano es algo más fino y se forman bloques de 0,5 a 1 m 3, aproximadamente.
Las rocas más representativas del Granito Palenqueniyeu consisten de cuarzo, plagioclasa, pertita filiforme, biotita, homblenda, mineral opaco y
apati ta . Están cortadas por aplitas y pegmatoides,

Las relaciones de campo proporcionan edades relativas; indican que los granitos Palenqueniyeu se intruyen en la Granodiorita Mencué.


Una muestra proveniente del afloramiento ubicado poco al norte de Pilahué proporcionó una edad radimétrica K/Ar de 269 ± 1 O Ma. Por su
parte, Pankhurst et al. (1992) dieron un valor Rb/Sr de 258 ± 15 Ma para la Granodiorita Prieto de la zona de La Esperanza, correlacionable con el Granito Palenqueniyeu.

Para correlaciones mas ajustadas ver el Batolito de Mencué (Gregori et al. 2020)

wpe4.jpg (158034 bytes)

 

 

13 Zona de Cañadón Quili Mahuida, Cañadón La Blancura, Cañadón Mencué, Cañadón Curru Mahuida: BATOLITO DE MENCUE

In accordance with field recognition and microscopic descriptions, the
acidic intrusive rocks, named here Mencué Batholith were divided into three units. These rocks occupy 80% of the studied area (Figs. 2 and 3). The basic dikes, that cut these bodies were assigned to a later magmatic event.
The Jurassic rhyolitic dikes and ignimbrites of the Garamilla Formation
were also mapped and included in figures 2 and 3. This unit was studied by
Benedini and Gregori, (2012, 2013) and Benedini et al., (2014). Supplementary table 1 shows a brief sketch of units relationships and the principal characteristics of each one.

The Mencué Granodiorite
As indicated in supplementary table 1, this body is composed of a)
migmatites, b) mild foliated grey biotitic granodiorites, and c) white to pink twomica coarse-grained foliated granodiorites. These lithologies show transitional relationships between them.

Migmatites and mild foliated gray biotitic granodiorites outline small outcrops in the Cañadones but were never recognized in the flat area in-between, whereas the white to pink two-mica coarse-grained foliated granodiorites occupies nearly the whole surface of figures 2 and 3. The Mencué Granodiorite was intruded by the Cura Lauquén Granite and is therefore considered the first magmatic event.

The migmatites crop out mainly in the northern part of the area, along the Cañadones La Blancura and Mencué, near the Jaramillo, R. Arias, and S. Arias houses (Figs. 2 and 3, 4a, and 4b).

The rocks exhibit alternating light and dark bands exposed in the walls of the canyons. In some sectors, the deformation in the migmatites is intense, with the folding and refolding of the bands (Fig. 4c).
Stromatic and phlebitic structures were recognized. Included in the migmatites are the unmelted blocks of mica-schists and phyllites of the Cushamen Formation, up to 1 m long. These blocks are cut by small, deformed veins of granitic composition. Deformation in these “blocks” is similar to that observed in the migmatites and consists of centimetric microfolds. In some areas, the coalescence of migmatitic veins produces pink, twomica granitic pods, tens of meters wide.

Microscopically, the white bands are composed of orthoclase, plagioclase, and quartz, while the dark ones mostly include oriented flakes of biotite, muscovite and minor garnet. Accessory minerals are prismatic zircons, garnet, allanite, rutile, and opaque minerals. The crystals of quartz show a granoblastic texture, forming "ribbon quartz" structures where intracrystalline deformation, migration of grain boundaries and grain rotation was observed. Garnet occurs in euhedral crystals up to 2.5 mm thick, located in the dark bands.
The mild foliated grey biotitic granodiorites are located on the eastern border of the Cañadón Mencué, although in the Cañadón Blancura there are also a few outcrops (Fig. 3). The outcrops of grey biotitic granodiorite are always close to the migmatites. This grey granodiorite displays a medium-grained inequigranular texture composed of microcline, orthoclase, plagioclase, quartz, biotite, and small quantities of hornblende. Prismatic zircon and anhedral garnet are included in biotite. Plagioclases show curved twins, whereas the quartz exhibits ondulouse extinction, deformational bands, subgrains, and sutured borders. Micas are flexured, showing a fish design. Near the Burgos house, the mixing between this granodiorite the migmatites and the pink granodiorite was recognized (Fig. 4d).
The white to pink, two-mica, coarse-grained foliated granodiorites occupy nearly the whole area (Figs. 2 and 3). The best exposures appear between the Cañadones Curru Mahuida, Mencué, and La Blancura (Figs. 3 and 4e), but also in Cerro Pafaniyue and Cañadones Curá Laufquén, and Pilahue. Along the Limay river and the Piedra del Aguila Dam, the quality of the outcrops is poor due to the Quaternary cover. Further south, these granodiorites are found in the Laguna Blanca, Pilquiniyeu del Limay, Comallo and Coquelén areas (Figs. 1, 2 and 3). In several areas, small pods of the grey granodiorite are included in the two-mica, coarse-grained granodiorites. Around these pods, the pink granodiorite shows a change of color and mineralogy. The color is pale grey and includes small quantities of hornblende. In other outcrops, the contact between lithologies is sharp, and no evidence of contamination between both has been found.
The two-mica, coarse-grained granodiorites display an inequigranular, hypidiomorphic texture. The mineralogy is plagioclase, biotite, muscovite, Kfeldspar, quartz, and accessory minerals such as zircon and garnet. The plagioclase is prismatic, with polysynthetic twinning and curved cuneiform lamellae. Diffuse planes of gliding are common. The K-feldspar displays simple Carlsbad twins and advanced sericitization, as well as microgranophiric, mirmequitic, and micropertitic intergrowths. Quartz crystals are anhedral with
ondulouse extinction and sutured borders.
The micas are subhedral, displaying flexures and a non-uniform extinction. The garnets are anhedral, with parting, and are associated with biotite. The maximum size reaches 250 ƒÝm. Sillimanite was occasionally observed. During field reconnaissance, several foliation planes formed by oriented mica flakes were identified and measured.
A peculiar characteristic of the two-mica, coarse-grained granodiorite is the presence of a nearly horizontal banded structure, 25 to 50 cm thick. This structure is formed by an alternation of medium-grained bands that change transitional to coarse-grained bands (Fig. 4f). This group of bands alternates with "normal" non-banded granodiorite. In the coarse-grained bands, quartz and microcline reach up to 6 cm long, whereas muscovite is up to 2 cm long. The above-mentioned rocks are cut by pegmatitic and aplitic dikes. The aplitic dikes appear scattered in the two-mica, coarse-grained granodiorite, but are not common. They display a saccharoid texture, composed mostly of microcline, grey quartz, and muscovite.


The Cura Lauquén Granite
These bodies are composed by homogeneous coarse-grained porphyritic granite, characterized by rounded outcrops and advanced weathering (Figs. 2, 3, 4g and h). The outcrops are rare, isolated, and located near the Herrera, Cortéz, and Blancura Centro houses, as well as in Cañadón La Blancura, Arroyo Pilahue, Cañadónes Lincopan, and Quiñihuao. There are more outcrops in the area of figure 2, but they can´t be drawn because of their small size (Fig. 4g). Pegmatitic and aplitic dikes cutting the Cura Lauquén Granite are absent. Field relationships observed 2 km south of the Herrera house indicate that this granite intrudes the Mencué Granodiorite. The contact is sharp, without evidence of thermal effects on the last. In several outcrops, the Cura Lauquén Granite shows the absence of pervasive foliation planes as observed in the Mencué Granodiorite. However, a careful view shows the existence of small isolated planes marked by oriented flakes of biotite and muscovite. Microcline phenocrysts are mainly scattered, although a few seem to have an incipient orientation.
The rocks present a holocrystalline, inequigranular, coarse-grained texture with porphyritic sectors where plagioclase and microcline phenocrysts are up to 1 cm long (Fig. 5a). The rock is composed, in decreasing order of abundance, of plagioclase, quartz, microcline, biotite, muscovite, and epidote.
Plagioclase crystals present normal and oscillatory zoning, polysynthetic twins with both defined and vague flexures, and even displaced by gliding planes. The microcline displays granophyric and mirmequitic textures, as well as simple Carlsbad law twins. The quartz is anhedral with ondulouse extinction and deformational belts. Epidote crystals are abundant, up to 1 mm long, whereas garnet is euhedral and associated with biotite. This mineral appears curved around garnet, showing that the garnet formed before the last deformation. Accessory minerals found here are zircon, apatite, rutile, and opaque minerals.
In outcrops, the horizontal alternation between fine and coarse bands of the Mencué Granodiorite was not found. Defined planes of foliation are rare, but the incipient orientation of mica, were recognized several times.

La Blancura syenogranite.
These rocks form very small outcrops scattered along the Cañadón Blancura, (40º 09´S-69° 47´W), (Figs. 3, 5b, and 5c). Careful observation in other Cañadones produces non-positive results, possibly due to the small size of the outcrops. According to field relationships, this lithofacies cuts sharply through the grey and pink granodiorites of the Mencué Granodiorite in Cañadón La Blancura. Relationships with the migmatites and with the Cura Lauquén Granite were not observed. This suggests that this lithofacies is the youngest granitic lithofacies recognized in this area.
The rock displays a holocrystalline, inequigranular, hypidiomorphic texture composed of microcline, quartz, muscovite, plagioclase, and biotite. The presence of miarolitic cavities is common (Fig. 5c). The alkali feldspars are subhedral, with a prismatic habit, and are altered to sericite. They show crosshatched and Carlsbad twins and intergrowths such as pertitic, micrographic, and mirmequitic textures. Deformation was not observed in the outcrops but in the microscope it is indicated by curved micropertites, deformational bands in quartz, and ondulouse extinction. Accessory minerals are euhedral titanite, prismatic subhedral zircon, and garnet.

Granitic dikes
Up to 50 m wide, 5 km long, pink to white dikes cut the outcrops of Mencué Granodiorite sharply in multiple directions. They are abundant in the northern part of figure 2. They were also recognized along the Cañadón Curru Mahuida and in the area of Cerro Mirador. These dikes exhibit a coarse-grained texture, similar to the rocks that intrude, to which it seems they are related. Field relationships with other granitic rocks were not observed. They show a porphyritic to inequigranular texture composed of quartz, K-feldspar, biotite, and scarce plagioclase. Alteration minerals are chlorite, calcite, epidote, and sericite. Mirmequites are common.

Geochronological results
A set of four samples of granitic rocks was analyzed for geochronology at the Arizona LaserChron Center, Department of Geosciences, the University of Arizona, using the procedures described by Gehrels et al. (2008). The localities of selected samples for LA-ICP-MS zircon U-Pb dating are as follows: In the case of the Mencué Granodiorite we used a migmatite (sample MS3, 40° 08' S- 69°47' W) and a granodiorite (sample M38, located at 40°46' S- 69°54' W, southwest of Laguna Blanca locality). For the Cura Lauquén Granite we used sample DN4a, located near Cerro Pafaniyeu at 40°16' S–69°55' W. In the case of La Blancura Syenogranite, we selected sample Q16 located at 40°10' S– 69°47' W, in the Cañadón La Blancura, near the Herrera house. The isotopic ratios and age results are displayed in supplementary tables 2 to 5 and Fig. 6. The ages were calculated using Isoplot 3.0 (Ludwig, 2003).

Migmatite of the Mencué Granodiorite
In sample MS3 (migmatite) were analyzed 22 spots that include the cores and
rim of the zircons. These zircons show variable abundances of U (744–79 ppm) and U/Th ratios, ranging from 1.2 to 14.5. The results of all zircons (Supplementary table 2) yield a robust age of 284.8 ±1.3 Ma. No substantial difference between cores and rims was observed. The Wetherill Concordia UPb diagram is shown in figure 6a, while the weighted average diagram for these zircons is displayed in figure 6b. Both diagrams show an average age of 284 Ma, which, according to the 2017 International Chronostratigraphic Chart
(International Commission on Stratigraphy, 2017), corresponds to an Artinskian age (Cisuralian, Early Permian). However, individual spots extend between 294 and 280 Ma, so a wider range of crystallization for these rocks cannot be ignored (Sakmarian- Kungurian).
As indicated above, field reconnaissance and the detailed mapping in the Cañadones Mencué and La Blancura show that the migmatites and the grey granodiorite represent the first event of melting of metasedimentary rocks to form granitic magmas in the area studied. It is thought that the 284.8 ±1.3 Ma age represents the average age of fusion of the host rocks of the Mencué Batholith and the first stage on the emplacement of the Mencué Granodiorite body as migmatitic pods.

White to pink two-mica granodiorite of the Mencué Granodiorite
This rock is represented by sample M38. Twelve zircon crystals are analyzed.
They are mostly euhedral and prismatic, with oscillatory zoning. They show variable abundances of U (947–59 ppm) with U/Th ratios between 1.7 and 17.7. (Supplementary table 3). A Wetherill Concordia U-Pb diagram for this group of zircons is shown in figure 6c (272.1 ± 1.8 Ma), whereas figure 6d shows the weighted average diagram, yielding an age of 273.0 ± 1.2 Ma. According to the 2017 International Chronostratigraphic Chart (International Commission on Stratigraphy, 2017), this corresponds to a Kungurian age (Cisuralian, Early Permian). Again, individual spots extend the crystallization age from the Roadian to the Kungurian (Late Cisuralian-Early Guadalupian). According to field mapping, the white to pink two-mica granodiorite of the Mencué Granodiorite, occupies most of the studied area and represents the largest regional magmatic event after the outcrops between Piedra del Aguila and Río Pichi Leufu.


Cura Lauquén Granite
These bodies are represented by sample DN4a. Zircon crystals are euhedral with oscillatory zoning. They display U contents between 1023 and 122 ppm. U/Th ratios vary between 51 and 1.9. (Supplementary table 4). The Wetherill Concordia U-Pb diagram for these zircons is shown in figure 6e and indicates an age of 264.1 ±1.4 Ma. The weighted average diagram is shown in figure 6f
with an average age of 264.1 ± 1.8 Ma. These results indicate a Capitanian age (Late Guadalupian, Middle Permian). However, the individual spots could extend the crystallization age into the Wordian (Middle Guadalupian, Middle Permian, International Commission on Stratigraphy, 2017).

La Blancura Syenogranite
Sample Q16 (n: 15) from Cañadón La Blancura represents this body. The concentrations of U are between 70 and 1316 ppm, whereas U/Th ratios are between 1.3 and 26.7. (Supplementary table 5). Most zircons are euhedral crystals with oscillatory concentric zoning. The Wetherill Concordia U-Pb diagram for these zircons is shown in figure 6g, while figure 6h displays the weighted average diagram. The Concordia age for this group is 252.9 ± 1.3 Ma and the weighted average diagram indicates 253.0 ± 1.1 Ma. According to field relationships, correspond to the last granitic intrusive event. The age is Changhsingian (Late Lopingian, Late Permian, International Commission on Stratigraphy, 2017). The individual spots extend the crystallization range from Early Triassic (Olenekian) to the Late Permian (Wuchiapingian)
The Th/U ratios for all analyzed zircons vary between 0.037 and 0.83. Low Th/U ratios (<0.1) in zircons were considered to be an indication of a metamorphic origin. However, metamorphic zircons with high Th/U exist, particularly in high-degree rocks. The Th/U ratios in zircons are controlled by other coexisting phases, and the presence of Th-rich phases such as allanite or
monazite generally infers low Th/U in metamorphic zircons. Rocks in which these phases are not present, or have been dissolved in anatectic melts, will have metamorphic zircons with higher Th/U ratios (Möller et al., 2003).

Geochemical characterization
Twenty representative samples of the different recognized bodies were analyzed at ACTLABS using ICP, XRF, and INAA according the lab methodology. International geostandards were used as references.


Classification of the granites
Major, trace and rare earth element data for the samples are listed in Supplementary table 6. The Streckeisen and Le Maitre (1979), Barker (1979), Cox et al. (1979), and Middlemost (1994) diagrams were used for classification and nomenclature.
The migmatites the Mencué Granodiorite plot in the granite, granodiorite and tonalite fields in the Streckeisen and Le Maitre (1979), Barker (1979) (Fig.7b), Cox et al. (1979), and Middlemost (1994) diagrams (Figs. 7a, b, c, d and e). By contrast, the gray granodiorites plot in the fields of monzogranite, granite, and granodiorite. The white to pink two-mica granodiorite of the Mencué Granodiorite plot in the fields of tonalite, granite, granodiorite, and trondhjemite in different diagrams (Figs. 7a, b, c, d, and e).

The samples of Cura Lauquén Granite fall in the granite, granodiorite and even tonalite fields in most classification diagrams. In the case of La Blancura Syenogranite, the rocks plot as alkali feldspar granite, syenogranite, and monzogranite in the diagram from Streckeisen and Le Maitre (1979), (Fig.7a, e), whereas in the diagrams from Barker (1979) and Cox et al. (1979) samples fall in the granite field.

In the alkali-SiO2 diagram from Irvine and Baragar (1971) all granitic rocks plot in the subalkaline field (Fig. 7f). Irvine and Baragar's (1971) AFM diagram (not shown) indicates a calc-alkaline trend for the granitic rocks. According to the Shand index (in Maniar and Piccoli, 1989), the intrusive rocks are peraluminous (Fig. 7g).


Trace elements
In the variation diagrams, Ba, Sr, and Zr contents decrease with rising SiO2 whereas Rb contents increase. (Figs. 8a, b, c and d). Ba and Sr contents vary considerably between 0 and 1500 ppm in the first diagram, and between 100 and 700 ppm in the second. Contents of Sr, Rb, and Zr in samples of La Blancura Syenogranite form a restricted group which can be separated from the other bodies (Figs. 8b, c, and d). Values of Zr are lower and Rb is higher in La Blancura Syenogranite (Figs. 8c and d) than in other bodies. The values of Zr are typical of magmas produced by partial melting of crustal rocks at relatively low temperatures (Patiño Douce, 1999).
Rb and Rb/Sr values (Figs. 8c and e) are quite constant in the Mencué Granodiorite and the Cura Lauquén Granite indicative of a similar source. The
La Blancura Syenogranite form a relatively isolated population. In the molar A/CNK vs. SiO2 diagram (White and Chappell, 1977), most granites plot in the S-type granite field (Fig. 8f). In the La/Nb vs Rb diagram (Fig. 8g) most samples plot in the ultrapotassic volcanic and plutonic field or alkaline fields. However, only samples of La Blancura Syenogranite have a K2O content higher than 3%, but K2O/Na2O and MgO values lower than those required by the Foley et al. (1987) classification of ultrapotassic rocks. In the Nb vs. Rb/Zr diagram from Martin (1994) (Fig. 8h), the Mencué Granodiorite and the Cura Lauquén Granite plot mainly in the immature or normal continental arc fields.


The granitic samples were plotted in expanded primordial mantlenormalized diagrams using the values from Wood et al. (1979). The calcalkaline affinity of the Mencué Granodiorite and Cura Lauquén Granite is evident from the negative anomalies of Nb and Ta in figures 9a, b, c, and d. Migmatite display moderate negative anomalies of Nb and Ta, whereas the grey and pink to white granodiorites, and the Cura Lauquén Granite have important negative anomalies of Ta, Nb, Ba, Sr, Ti, and P, which are indicative of fractionation of K-feldspar, apatite, and Fe-Ti oxides from the magma. The presence of significant positive Pb anomalies (not shown) indicates that crustal contamination played an important role. The negative Sr anomalies in the grey granodiorite could be produced by plagioclase fractionation.
The Nb*/NbN and Ta*/TaN values are 1.7 and 2.68 for migmatite. In the grey granodiorite, they vary as follows: Nb*/NbN: 2.68–10.0 and Ta*/TaN: 2.48– 8.3. For the pink to white two-mica, granodiorite, values of Nb*/NbN are between 3.9 and 9.0, whereas for Ta*/TaN they are between 7.0 and 12.0.

Increasing values of Nb*/NbN and Ta*/TaN are clearly shown in figures 9 a, b, and c. For the Cura Lauquén Granite they are Nb*/NbN: 1.9–4.1, Ta*/TaN: 3.3–5.8 (Fig. 9d). These values are in the range of grey granodiorite.
La Blancura Syenogranite shows very low values for Nb*/NbN (1.1 to 3.6) and Ta*/TaN (0.026 to 2.6), which is indicative of positive anomalies (Fig. 9e
There is a noteworthy increase in subduction-signature chemical components since the migmatites to the pink to white granodiorite of the Mencué Granodiorite, while those decreases in Cura Lauquén Granite which exhibits values similar to pink to white granodiorite.
The notable positive anomalies in Rb, Ba, Sr, and Pb, and pronounced negative anomalies in Ti, Nb, and Ta, mainly in the Mencué Granodiorite and Cura Lauquén Granite, are geochemically consistent with magma formed in a subduction zone (Pearce, 1983), (Figs 9a, b, c, and d). Samples from La Blancura Syenogranite have an abundance of Rb and an absence of positive anomalies of Ba and Th, whereas Ta and Nb anomalies are mainly positive, similar to A-type within-plate granites.

Rare earth elements
Samples of the three bodies were plotted in chondrite-normalized diagrams using Sun and McDonough's values (1989). For the Mencué Granodiorite and Cura Lauquén Granite the diagrams are similar, with LaN/LuN of 22.5 for the migmatite. In this group a minor, positive Eu anomaly appears, which could be due to cumulate K-feldspar or plagioclase (Fig. 9f). The REE pattern of the migmatite and pink to white granodiorite displays a concave HREE pattern that indicates that hornblende may be considered as a phase fractionated from the magmas.
For the grey granodiorite, values of LaN/LuN are between 50 and 75 with small negative Eu anomalies, possibly due to plagioclase fractionation. In the case of the pink to white granodiorite, which have LaN/LuN between 25 and 30, there are small or null Eu anomalies.
Rocks of the Cura Lauquén Granite show LaN/LuN values between 11 and 20 with an absence of Eu anomalies (Fig. 9g). The patterns of REE for samples of the La Blancura Syenogranite are completely different, with LaN/LuN in the range of 2.4–8. All samples display a negative Eu anomaly due to the plagioclase fractionation (Fig. 9h). Samples from Mencué Granodiorite and Cura Lauquén Granite are similar and possibly derived from the same batch of magma, whereas La Blancura Syenogranite belong to a different type of magma or were emplaced in a different tectonic setting.
The large negative Eu depletion of the La Blancura Syenogranite requires extensive fractionation of plagioclase. However, Eu depletion could also be produced by K- feldspar fractionation, which would also explain the negative Ba anomaly.
Thus, both plagioclase and K- feldspar played a significant role during the magmatic differentiation. The La Blancura Syenogranite was probably formed from the residual liquids with complete fractionation of plagioclase because no plagioclase is observed in these rocks. However, it cannot be ruled out that this body was formed from a later batch of magma, with a more alkaline composition.

Protoliths and melting temperatures.
There is a general consensus that most peraluminous magmas are generated by partial melting of pelitic, quartz-feldspathic, and/or mafic protoliths. The studied granites show high contents of SiO2 and Al2O3, and low contents of CaO and MgO, possibly generated by partial melting of pelitic and quartzfeldspathic rocks.
Because the CaO/Na2O ratios in the granites vary between 0.05 and 0.29, it is believed that the rocks were formed by the partial melting of metapelites with a lower content of greywackes (Jung and Pfänder, 2007). The ACF diagram by Winkler (1979) was used to elucidate the protoliths of the granitic rocks. There, samples of the Mencué Granodiorite and the Cura Lauquén Granite plot in the pelitic rocks field, whereas lithofacies III plot in the Al-rich pelites field, as indicated in figure 10a.


In order to evaluate the melting temperature of the granites, values of normative albite, orthoclase, and quartz were plotted in the Qz-Ab-Or-H2O experimental system (Fig. 10b), where the minimum and eutectic compositions
for haplogranites are displayed (Tuttle and Bowen, 1958; Luth et al., 1964). Melting temperatures between 1 and 10 kbar water pressures (Winkler, 1979)
are shown (Fig. 10c). Nearly all samples plot in the minimum temperature isotherm between 1 and 2 kbars (Fig. 10b) with only a few samples outside this position.
The average temperature for the La Blancura Syenogranite was also obtained by applying the equations defined by Jung and Pfänder (2007) to determine the melting temperatures of pelitic and quartz-feldspathic materials at which peraluminous granites are generated. The results, applying both the linear and exponential laws, indicate average temperatures of 577°C and 698°C. If Mencué Granodiorite and La Blancura Granite are considered, up to 200°C higher is necessary to melt a quartz-feldspathic protolith.


Geotectonic discrimination
Due to the fact that the Gondwanan granites in the western part of the North Patagonian Massif lack tectonic setting information, several discriminatory diagrams have been used to elucidate preliminary emplacement environments. On the Yb+Ta vs. Rb (Fig. 10d), and Ta vs. Yb (Fig. 10e) diagrams from Pearce et al., (1984) most samples plot in the volcanic-arc granites field, with a few in the syn-collisional and within-plate granite fields. As indicated by Pearce et al., (1984) careful interpretation of these diagrams is required, because many
granitic rocks exhibit geochemical signatures inherited from previous geotectonic events.
The within-plate character of some samples is reinforced in the diagram from Whalen et al. (1987) (Fig. 10f), where several samples plot in the A-type granite field. Samples of La Blancura Syenogranite plot in the syn-collisional and late- to post-collisional granite fields (Fig. 10g) of the Rb/30-Hf-Ta*3 diagram (Harris et al., 1994). Samples from other bodies plot in the volcanic-arc granite field. Finally, in the Y-Nb-Ce diagram, (Eby, 1992) most samples plot in the within-plate field, with a few in the post-collisional, post-orogenic settings field (Fig. 10h). These results suggest that the studied granites have evolved from calc-alkaline magmatism, possibly related to a subduction environment, into alkaline magmatism probably related to a within-plate environment.


Discussion
Chronological correlation with other igneous units of the northwestern
Gondwana magmatic belt, the North Patagonian Massif and southern Chile

The northwestern Gondwana belt of the North Patagonian Massif
As indicated above, there are few studies of the chronology of granitic rocks in the northwestern Gondwana belt of the North Patagonian Massif. The most important contributions are those of Varela et al. (2005), Pankhurst et al. (2006), and Gregori et al., 2016). In figure 11a we show a tentative chronological correlation between the Mencué Batholith and other granitic bodies of the northwestern Gondwana magmatic belt. Based on our results, those of Varela et al. (2005), and Pankhurst et al. (2006) we divide the magmatism in this belt into five events, which are represented differently along the belt.


The first magmatic event has ages between 294 and 279 Ma and is represented by the Comallo Tonalite, Comallo Granodiorite, Piedra del Aguila Granite, and migmatite and grey granodiorite of the Mencué Granodiorite, (Figs. 11a and b). The Comallo Granodiorite yields an age of 281±17 Ma, using three zircon fractions, whereas the Comallo Tonalite indicates 279±18 Ma, using four zircon fractions (Varela et al., 2005). These rocks are texturally and mineralogically similar to the migmatite and grey granodiorite of the Mencué Granodiorite and also intrude the Cushamen Formation, (Marcos et al., 2018), being post-Pennsylvanian despite errors in the radiometric results. These results indicate that the Mencué Batholith extends to the Arroyo Pichi Leufu area (Figs, 2 and 11b)
In the Piedra del Aguila area, a few kilometers west of our studied area, Pankhurst et al., (2006) dated a two-mica solid-state deformed granite (Fig. 11a), using U-Pb SHRIMP in zircons, which yielded an age of 290 ± 3Ma. This magmatic event produces migmatites, gneisses, and solid-state deformed tonalites and granodiorites. Because the ages were recorded in solid state deformed rocks, we assume that they were emplaced coeval with an intense deformational event with Sakmarian-Kungurian ages (Cisularian, Early Permian). This event was recorded only in the western part of the belt (Fig.
11b).

The second magmatic event includes ages of 269–275 Ma recorded in the Paso Flores Tonalitic gneiss, the Mencué Granodiorite, the Palenqueniyeu Granite and in the Prieto Granodiorite (Figs. 11a). Three samples of the Paso Flores Tonalitic gneiss yielded an age of 273.1 ± 9.5 Ma (Varela et al., 2005). North of the Pilahue locality (70 km NE of Varela et al., 2005 samples) Cucchi et al. (1998) obtained a K-Ar age of 269 ± 10 Ma in the Palenqueniyeu Granite.
This result is within the range of the pink to white granodiorite of the Mencué Granodiorite. The Prieto Granodiorite belongs to the La Esperanza plutonic complex, located 100 km east of the studied area. It was studied by Llambías and Rapela, (1984), Caminos, (1987); Caminos et al. (1988), Rapela and Llambías, (1999), and Pankhurst et al. (1992, 2006), amongst others. The Prieto Granodiorite has an U-Pb SHRIMP age in zircons of 273 ± 2 Ma. (Pankhurst et al. 2006). The event was Kungurian-Roadian (Cisularian-Guadalupian) and was recorded in the western and central part of the belt (Fig.
11b) and includes tonalites and granodiorites. This stage is the most extended in terms of the surface, possibly reaching 5.000 km2 between Arroyo Pichi Leufu and La Esperanza. The deformation is mild, less intense than in the first magmatic and deformational event. By contrast with the above-cited units, the Prieto Granodiorite is not solid-state deformed.

The third magmatic event ranges between 268 and 259 Ma and generated the Cura Lauquén Granite of the Mencué Batholith and the rhyolitic domes and dikes of the Dos Lomas volcanic-intrusive complex (Figs 11a and b). Although the outcrops of the Cura Lauquén Granite are relatively restricted in the Mencué area, they cover an important surface of the Palenqueniyeu and Colán Conhué area. The Dos Lomas volcanic-intrusive complex, located 100 km east of the Mencué Granites, was also studied by Llambías and Rapela, (1984), Caminos, (1987); Caminos et al. (1988), Rapela and Llambías, (1999), and Pankhurst et al. (1992, 2006). In the upper part of the plutonic-volcanic section, Pankhurst et al. (2006) obtained an U-Pb age of 264 ± 2 Ma for the rhyolitic domes and dikes.
The Cura Lauquén Granite of the Mencué Batholith is mildly deformed, and possibly represents the vanishing of the deformational events and occurred between the Wordian and Wuchiapingian (Guadalupian to Lopingian, Middle to Late Permian).

The fourth magmatic event (Figs. 11a) is represented by La Blancura Syenogranite of the Mencué Batholith, the Chasicó Granodiorite, the Calvo Granite and the ignimbritic rhyolites of the Dos Lomas volcanic-intrusive complex (250–239 Ma, Olenekian, Early Triassic). In the Chasicó area, located 70 km east of the studied area, (Figs. 11b) Dalla Salda et al., (1991) obtained a tentative Rb-Sr isochron of 239 ± 9 Ma for the Chasicó Granodiorite. The U-Pb ages in zircon for the Calvo Granite is 250± 2 Ma whereas for the ignimbritic rhyolites is 246 ± 2 Ma. (Pankhurst et al. 2006). These younger ages were not detected in the Mencué area.


Finally, further east, in the Caita Có area, Gregori et al. (2016) studied the foliated Caita Có Granite, as well as the La Seña and Pangaré mylonites. UPb ages in zircons indicate an age of emplacement between 224 and 206 Ma if the cores and tips of zircons are considered. This fifth magmatic event is related to movement along the NW-SE curvilinear strike-slip fault systems that prompted the emplacement of the granite and the development of the mylonitic belts (Figs. 11a and b)

Other magmatic belts of the North Patagonian Massif
In the southwestern Gondwana magmatic belt (Figs. 1 and 11c), rocks with similar ages to those described in the northwestern Gondwana belt were found. Near Gastre, Pankhurst et al. (2006) obtained a U-Pb SHRIMP age of 294 ± 3 Ma in a granitic body. For the Mamil Choique Formation, near Río Chico, Varela et al. (2005) obtained a U-Pb age of 272 ± 2 Ma, whereas, for the Túnel Tonalite, located also in Río Chico, Pankhurst et al. (2006) got a U-Pb SHRIMP age in zircon of 295 ± 2 Ma. Since this group of granitic rocks includes I-type granitoids and S-type subduction-related bodies, it seems that at least the northwestern part of this magmatic belt is related to an Early Permian subduction system.
Because the western parts of both the northwestern and southwestern Gondwana magmatic belts of the North Patagonian Massif, have the oldest ages of magmatism and are located approximately at 70° 30´W and are considered to be subduction-related, a subduction zone must be located west of this area, possibly in Chile (Fig. 11c).


In the northeastern Gondwana magmatic belt of the North Patagonian Massif, (Fig. 1) the Northern Yaminué complex (Rapalini et al., 2013, Pankhurst et al. 2014) yielded ages in a tonalite-granodiorite and a granodiorite (251 ± 2 Ma and 249 ± 14 Ma). In the Yaminué tonalite, Chernicoff et al. (2013) obtained
a U-Pb SHRIMP age of 261.3 ± 2.7 Ma in zircon. The Navarrete Granodiorite yielded a U-Pb SHRIMP age in zircon of 281 ± 3 Ma (Pankhurst et al., 2006), whereas undeformed tonalite gave a U-Pb SHRIMP age of 252 ± 3 Ma (Pankhurst et al., 2014). Near Valcheta, Pankhurst et al. (2006) the Mina San Martin Granite, yielded a U-Pb age of 267 Ma in zircon. A few kilometers south, in the Pailemán area, an Ar-Ar age of 266 ± 1.5 Ma in the Arroyo Tembrao Stock was obtained by Grecco and Gregori (2011) and a Rb-Sr age of 268 ± 3 Ma in the S-type Arroyo Pailemán Stock was obtained by Grecco et al. (1994).
La Verde Granite yields a U-Pb age in zircons of 261 ± 2 Ma (García et al., 2014), whereas Varela et al. (2008) dated the Laguna Medina Pluton using U-Pb in zircon, obtaining an age of 291 ± 5 Ma.

Unlike the other Gondwana magmatic belts, this one exhibits only a few areas with ductile deformed granites. The northeastern Gondwana magmatic belt doesn´t show subductionrelated granites and their emplacement is related to an escape tectonic as indicated by Gregori at el (2008).


Southern Chile
In the Chilean Coastal Cordillera between 33° and 40° S, two domains were identified (Fig. 11c). The eastern one is the calc-alkaline Coastal Batholith emplaced mainly between the Late Carboniferous and the Early Permian (Deckart et al., 2014). The western one is an accretionary prism (Hervé et al., 2013) that can be divided into a low P-high T Eastern Metamorphic series with Carboniferous depositional ages and a high P-low T Western Metamorphic Series (Hervé, 1977) that shows a Permian depositional age and Permian to Triassic ages for the metamorphism (Duhart et al., 2001).
Duhart et al. (2001) grouped these rocks into the Bahía Mansa metamorphic complex, (Jara et al., 2011) composed of micaceous and quartz schists and serpentinized ultramafic bodies. The deformational and metamorphic events that affected these rocks were dated by K-Ar and 40Ar/39Ar methods in the range of 260-240 Ma.
In the Coastal Batholith, the Futrono-Riñihue Batholith (Fig. 11c) forms wide outcrops in the Riñihue and Ranco lakes (Rodriguez et al., 1998). This includes granites, granodiorites, and biotite and hornblende tonalites, medium to coarse grain leucogranites, and rhyodacitic porphyrites. In addition, quartz, oligoclase-andesine, microcline, and scarce pyroxene, apatite, and zircon are recognized. The chemistry of the rocks is metaluminous with a high-K calc-alkaline signature. K-Ar and Ar/Ar radiometric dating in biotite yield a ges in the range of 295 ± 7 and 309 ± 8 Ma. (Munizaga et al., 1988). Campos et al. (1998) obtained K-Ar ages in biotite and amphibole, with values of 267 ± 8, 286 ± 9, 313 ± 7, 316 ± 7 Ma and an U-Pb in zircons age of 297.6 ± 1 Ma.

In the southern coast of Lago Ranco, the Futrono-Riñihue Batholith yields an U-Pb in zircon age of 304.9 ± 2.4 Ma (Deckart et al., 2012). Therefore, in southern Chile, a subduction system that includes an accretionary prism and arc-related granitic rocks was developed coevally with the emplacements of the Mencué and other Permian bodies in the western North Patagonian Massif (Fig. 11c)


Geodynamic setting for the Gondwana intrusive magmatism between 39°and 41° S
The older and more deformed igneous bodies of the first magmatic event were recorded only in the western part of the belt (Fig. 11b and c). The second magmatic event, showing granites with minor solid-state deformation, developed eastwards, disappearing near the Palenqueniyeu locality. The belt formed by these granites is up to 75 km wide and is considerably more extended than the rocks of the first magmatic event. Outcrops can be observed in the area between Pichi Leufu river, Comallo, Laguna Blanca, Pilquiniyeu del Limay, Mencué and Piedra del Aguila.
The third magmatic event (Fig. 11b and c) is relatively restricted in the Mencué area, but forms important outcrops in the Palenqueniyeu and Colán Conhué areas, located 50 km east of the Mencué area, formed by mildly deformed granitic rocks.
In the Mencué area, the fourth magmatic event is represented only by small outcrops of La Blancura Syenigranite. The more extended outcrops appear in the Chasico and La Esperanza area, located 90 km eastwards of Mencué.


In the El Cuy-Caita Có area, located 170 km NE from the Mencué area, the Caita Có Granite shows ages between 224 and 206 Ma (Fig. 11b and c). These results indicate that the magmatism starts approximately at 294 Ma in the western part of the northwestern Gondwana magmatic belt, ending at 206 Ma in the eastern part of the belt. During ~90 Ma the magmatism migrates more than 250 km eastwards along a ~ N70° strike.
Schellart (2010) shows that the ~200 Ma geological evolution of the Andes can be attributed to the sinking of a wide slab into a layered mantle, where the whole-mantle wide-slab subduction drives the Andean orogeny.
The decreasing dip angle of the subducted slab explains the ~200 km of eastward migration of the central Andean magmatic arc. These results can be invoked to explain the migration of the magmatism in the northwestern Gondwana magmatic belt of the North Patagonian Massif.

wpe1.jpg (560113 bytes)

 

14 Zona Cañadón Pilahue, Cañadón Cura Lauquén, Cañadón Fita Ruin, Laguna Blanca: BATOLITO DE MENCUE

 

Zona 15: Cañadón Chileno, Paso Limay:

BATOLITO DE MENCUE

 

 

16: Zona de Comallo-Neneo Ruca

Se ubica en la carta Ingeniero Jacobacci

INGENIERO JACOBACCI

 

FAJA MAGMATICA GONDWANICA SUDOESTE

 

GONDWANICO SOMONCURA
Area 17: Zona de Rio Chico, Cañadón Chacay Huarruca y Sierra de Mamil Choique
Area 18: Zona de GAstre, Sierra de Calcatapul , Sierra de Lipetren
Area 19: Zona de PAso del Sapo, Sierra de Taquetrén

Area 20: Zona de Gan Gan, Coquelén y Colelache

Area 21: Zona de Sierra Chata, Cerro del Ingeniero

Area : Zona de

 

17 Zona Río Chico, Cañadón Chacay Huarruca, Sierra de Mamil Choique: Granitoides Mamil Choique

Formación Mamil Choique (Volkheimer, 1965) equivalente a Formación El Platero (Volkheimer y Lage, 1981) y Granitoides Mamil Choique.

Los Granitoides Mamil Choique consisten en tonalitas, migmatitas homogéneas, granodioritas y monzogranitos, de grano medio a grueso, biotíticos y biotilico-moscoviticos, con afloramientos de dimensiones batolíticas.
El contenido de minerales máficos es alto (10 a 23%), y es una característica el contenido de xenolitos de metamorfitas, así como poseer una esquistosidad y lineación mineral de similar orientación que la de las rocas metamórficas vecinas. La plagioclasa es de composición An4O-48%, y aparece junto a microclino pertítico, epidoto, apatita y esfena. El contenido de sílice de las granodioritas oscila entre 63% y 72%, con un tren evolutivo calcoalcalino; son rocas peraluminosas, con alto contenido normativo de corindón. La Granodiorita Mamil Choique ha sido datada mediante mediante circones obteniendo se una edad de 86-272 Ma

Dalla Salda el al. (1994) segregaron de la Formación Mamil Choique en la acepción original de Ravazzolli y Sesana, a granitos de menor antigüedad relativa, que denominaron Granito Viuda de Gallo.

El Granito Viuda de Gallo compone un stock que ofrece relaciones de intrusividad con el cuerpo mayor granodioritico. Son leucogranitos rosados, de grano medio, conteniendo biotita y moscovita. El contenido de máficos no excede el 7% en las muestras estudiadas; el feldespato potásico es microclino y representa un 22% a 45% de la roca; la composición de la plagioclasa presente es variable entre An3O% a An4O%. Las características geoquimicas ubican a estos granitos como los términos más diferenciados de una serie calcoalcalina; tienen un alto contenido de sílice (69% a 74%) y son rocas peraluminosas. Se considera que tiene la edad del Granito Mamil Choique.

wpe9.jpg (746147 bytes)

 

 

edades

 

ZONAS 17 Y 18 SE UBICAN EN LA CARTA INGENIERO JACOBBACCI

 

 

INGENIERO JACOBACCI

 

18 Zona de Gastre, Sierra de Calcatapul, Sierra de Lipetrén

mapa gastre

Granito Gastre, Granito Lipetrén. Granito Yancamil

 

 

 

 

19 Zona Paso del Sapo, Sierra de Taquetrén

Granito Sierra de Taquetrén

20 Zona de Gan Gan, Coquelén, Colaleche

Formación Mamil Choique (Volkheimer, 1965)

21 Sierra Chata

Diorita Mendez, Granito La Irene, Fm. Cerro del Ingeniero

 

 

CORRELACION MAGMATISMO GONDWANICO

 

BIBLIOGRAFIA SOBRE EL MAGMATISMO GONDWANICO

Basei, M. A. S., Varela, R., Sato, A. M., Siga, Jr., O. and Llambías, E. J., 2002, Geocronología sobre rocas del Complejo Yaminué, Macizo Nordpatagónico, Río Negro, Argentina. XV Congreso Geológico Argentino, El Calafate. Actas en CD.

Bjerg, E. A., Gregori, D. A. y Labudía, C. H. 1998. Geología y estratigrafía de la región de El Cuy, Comarca Nordpatagónica, provincia de Río Negro, República Argentina. Revista de la Asociación Geológica Argentina, 52 (3): 387-399.

Busteros, A., Giacosa, R., Lema, H. y Zubia, M., 1998. Hoja Geológica 4166-IV Sierra Grande. Provincia de Río Negro. Programa nacional de Cartas Geológicas de la República Argentina 1: 250.000 Boletín 241. 75 pp. SEGEMAR. Buenos Aires

Caminos, R., 1987. Evolución geológica del Macizo Nordpatagónico y sus relaciones con otras regiones del país. Serie Suplem.  # 3, 17-32. Univ. Nac. de La Pampa, Santa Rosa, Argentina.

Caminos, R., Llambías, E.J., Rapela, C.W., and Parica, C.A., 1988, Late Paleozoic-Early Triassic magmatic activity of Argentina and the significance of new Rb-Sr ages from Northern Patagonia: Journ. South American Earth Sci., 1: 137-145.

Cingolani, C., Dalla Salda, L., Hervé, F., Munizaga, F., Pankhurst, R., Parada, M. A. and Rapela, C. W., 1991. The magmatic evolution of northern Patagonia: New impressions of pre-Andean and Andean tectonics. In Andean magmatisn and its tectonic setting (Ed: Harmon, R. S. and Rapela, C. W.) Special Paper Geological Society of America, 265: 29-44.

Cucchi, R.J., 1991b, Magmatismo mesozoico en el Batolito de Somoncura, Argentina: Los intrusivos dioritoides del margen occidental. VI Congreso Geológico Chileno, Resúmenes Expandidos. 538-542.

Cucchi, R.J., 1993, La Formacion Lipetrén en el marco del Gondwana: Sector occidental del Macizo Nordpatagónico. XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos. Actas IV: 105-112.

Franzese, J. R, R.J. Pankhurst, C.W. Rapela, L.A. Spalletti, M. Fanning y M. Muravchik 2002. NUEVAS EVIDENCIAS GEOCRONOLOGICAS SOBRE EL MAGMATISMO GONDWANICO EN EL NOROESTE DEL MACIZO NORPATAGONICO  Actas XV Congreso Geológico Argentino. El Calafate

García, Valeria; Pascua, D.; Varela, Ricardo; González, Pablo Diego; Sato, Ana María, Geología y geocronología del plutón Laguna Medina y su contacto con la formación Sierra Grande, Río Negro

Gelós, E. M., 1977. Metamorfismo de contacto en el Yacimiento Sur de Sierra Grande, Provincia de Río Negro. Revista de la Asociación Geológica Argentina, 32 (2): 99-110.

Giacosa, R., 1993. El ciclo eruptivo Gondwánico en el área de Sierra Pailemán, Macizo Nordpatagónico, Argentina. XII Congr. Geol. Argentino y II Congr. De Exploración de Hidrocarburos. Actas IV: 113-119.

Giacosa, R. E., 1997. Geología y petrología de las rocas pre-cretácicas de la región de Sierra Pailemán, Provincia de Río Negro. Revista de la Asociación Geológica Argentina, 52 (1): 65-80.

Grecco, L. E., Gregori, D. A. Rapela, C. W., Pankhurst, R. J. and Labudía, C. H., 1994. Peraluminous granites in the Northeastern sector of the North Patagonian Massif. &mo. Congr. Geol. Chileno, Actas II: 1354-1359.

Grecco, L. E. and Gregori, D. A., 1999. The Arroyo Pailemán Granite Stock: A peraluminous S-Type intrusive. 17 LAK Extended Abstracts.

Gregori, D. A., Bjerg, E. A: and Saini-Eidukat, B., 2000. New insights on the Jurassic Granites from Somoncura Region, Patagonia, Argentina. XVII Simposio sobre la geología de Latinoamérica. Stuttgart.

Gregori, D. A., Grecco, L. E. and Llambías, E. J., 2003. El intrusivo López Lecube: Evidencias de magmatismo alcalino Gondwánico en el sector sudoeste de la provincia de Buenos Aires, Argentina. Revista de la Asociación Geológica Argentina. 58 (2): 167-175.  

Kay, S.M., Ramos, V.A., Mpodozis, C., and Sruoga, P., 1989. Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: Analogy to the Middle Proterozoic in North America?: Geology. 17: 324-328.

Llambías, E. J., Caminos, R. y Rapela, C. W., 1984. Las plutonitas y vulcanitas del ciclo eruptivo Gondwánico. IX Congr. Geol. Argentino, Relatorio I (4): 85-117.

Llambías, E.J., and Rapela, C.W., 1984, Geología de los Complejos Eruptivos de la Esperanza, Provincia de Río Negro. Revista de la Asociación Geológica Argentina. 39: 220-243.

Llambías, E.J., Rapela, C.W., and Parica, C., 1985, Rb-Sr geochronology of La Esperanza eruptive complexes, North Patagonian Massif (68º 28’ W, 40º 28’S): Communicaciones, Dept. de Geología, Universidad de Chile – Santiago. 35: 149-153.

López-Gamundi, O.R., Espejo, I.S., Conaghan, P.J., and Powell, C.M., 1994. Southern South America, in Veevers, J. J., and Powell, C. M., eds., Permian-Triassic Pangean Basins and Foldbelts Along the Panthalassan Margin of Gondwanaland: Boulder, CO, Geological Society of America Memoir 184: 281-329.

 Núñez, E., Bachman, E., Ravazzoli, I., Britos, A., Franchi, M., Lizuain, A. y Sepulveda, E., 1975. Rasgos geológicos del sector oriental del Macizo Somuncura, Provincia de Río Negro, República Argentina. II Congr. Latinoamericano de Geología Económica T II :247-266.

Nuñez, E., and Cucchi, R.J., 1990. Estratigrafía del sector noroccidental del Macizo Nordpatagónico en los alrededores de Mencue, Provincia del Rio Negro, Republica Argentina: XI Congreso Geológico Argentino. Actas 2: 125-128.

Pankhurst, R.J., Rapela, C.W., Caminos, R., Llambías, E., and Parica, C., 1992, A revised age for the granites of the central Somuncurá Batholith, North Patagonian Massif: Journal of South American Earth Sciences. 5: 321-325

Pankhurst, R., Caminos, R., and Rapela, C.W., 1993, Problemas geocronológicos de los granitoides gondwánicos de Nahuel Niyeu, Macizo Nordpatagónico: XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos. Actas 4: 99-104.

Ramos, V. A., 1975. Geología del sector oriental del Macizo Nordpatagónico entre Aguada Capitán y Mina Gonzalito, Provincia de Río Negro. Revista de la Asociación Geológica Argentina, 30 (3): 274-285.

 Ramos, V. A. y Cortés, J. M., 1984. Estructura e interpretación tectónica. IX Congr. Geol. Argentino, Relatorio I (12): 317-346.

 Rapela, C. W. and Caminos, R., 1987. Geochemical characteristics of the Upper Paleozoic magmatism in the eastern sector of Northpatagonian massif. Revista Brasileira de Geociencias, 17, (4): 535-543.

 Rapela, C. W. and Kay, S, M., 1988. Late Paleozoic to Recent magmatic evolution of Northern Patagonia. Episodes, 11, (3)

Rapela, C.W., Pankhurst, R.J., and Harrison, S.M., 1992, Triassic "Gondwana" granites of the Gastre district, North Patagonian Massif:  Trans. Roy. Soc. Edinburgh. 83: 291-304.

 Rosenman, H. L., 1972. Geología de la región de Arroyo Los Berros (vertiente oriental de la Meseta de Somuncura), Provincia de Río Negro, República Argentina.

Saini-Eidukat, B., Bjerg, E., Gregori, D., Beard, B. L. and Johnson, C. M., 1999. Jurassic Granites in the northern portion of the Somoncura Massif, Rio Negro Province, Argentina. XIV Congreso Geologico Argentino. Actas II: 175-177.

Saini-Eidukat, B., Beard, B., Bjerg, E. A., Gehrels, G., Gregori, D., Johnson, C., Migueles, N., and Vervoort, J. D. 2004. Rb-Sr and U-Pb age systematics of the Alessandrini Silicic Complex and related mylonites, Patagonia, Argentina. Geological Society of America Annual Meeting Abstracts with Programs. 36 (5): 222.

Saini-Eidukat, D. Gregori, E. Bjerg, N. Migueles, B. Beard,C. Johnson, J. Vervoort and G. Gehrels. 2005.Rb-Sr and U-Pb age systematics of the Alessandrini Silicic Complex and related rocks, El Cuy region, northern Patagonia, Argentina. Subbmited to Journal of South American Earth Sciences.

Ricardo Varela, Miguel A.S. Basei, Carlos A. Cingolani, Oswaldo Siga Jr., Claudia R. Passarelli, 2005. El basamento cristalino de los Andes norpatagónicos en Argentina: geocronología e interpretación tectónica. Andean Geology, 32, 2, pp. 167-187, Servicio Nacional de Geología y Minería. Chile

Ricardo Varela, Kei Sato, Pablo D. González, Ana M. Sato y Miguel A.S. Basei, 2009. Geología y geocronología Rb-Sr de granitoides de Sierra Grande, provincia de Río Negro. Rev. Asoc. Geol. Argent. 64 .2,  Buenos Aires

Ricardo VARELA, Daniel A. GREGORI, Pablo D. GONZÁLEZ y Miguel A. S. BASEI. (2015) CARACTERIZACIÓN GEOQUÍMICA DEL MAGMATISMO DE ARCO DEVÓNICO Y CARBONÍFERO-PÉRMICO EN EL NOROESTE DE PATAGONIA, ARGENTINA. Revista de la Asociación Geológica Argentina 72 (3): 419 -432

 

DEFORMACION GONDWANICA EN EL NORTE DE LA PATAGONIA INCLUYENDO SECTORES ADYACENTES: SIERRA DE LA VENTANA, BLOQUE DE CHADI LEUVU, LAS MATRAS, COMARCA NORDPATAGONICA, SUDAFRICA, INCLUYENDO LA HIPOTESIS DE ALOCTONIA O AUTOCTONIA DE PATAGONIA

interaccion patagonia Gondwana.gif (42809 bytes) Estructura trascontinental.gif (109491 bytes) Estructura trascontinental 1.gif (125376 bytes) Hipotesis ramos.gif (38077 bytes)

Interacción Terreno Panthalassan-Gondwana Hipótesis interacción Patagonia Gondwana Estructura transcontinental límite Patagonia Gondwana Arcos del N de Patagonia relacionados con la interacción Patagonia Gondwana

 

 

Hipótesis de Gregori-Kostadinoff

FIGURAS TOMADAS DE: Kostadinoff, J., Gregori, D. A. and Raniolo, A., 2005. Configuración geofísica-geológica del sector Norte de la provincia de Río Negro. Revista de la Asociación Geológica Argentina. LX: 368-376).

Daniel A. Gregori , José Kostadinoff, Leonardo Strazzere, Ariel Raniolo, 2008. Tectonic significance and consequences of the Gondwanide orogeny in northern Patagonia, Argentina, Gondwana Research, 14: 429–450

a

 

 

 

Results
Three areas with positive gravimetric anomalies, four with negative anomalies and several features characterized by steep gravity gradients (Figs 7A and 8A, B) were recognized during this study.


Positive anomalies
Chimpay–Gobernador Duval High
Residual anomalies within the range −27 to −14 mGal, a relatively positive anomaly occur from Chimpay to Gobernador Duval and Puelén (Fig. 7). Refraction shots by the YPF (Yapeyú to RN5, Fig. 6A) indicate a thickness of more than 1000 m for the Mesozoic Neuquén Basin near Gobernador Duval. In the Chimpay–La Japonesa area this basin reaches a maximum thickness of 300 m. In order to satisfy the observed anomalies a density contrast of +0.32 g/cm3 between the Mesozoic sedimentary rocks and those of the basement (Table 1) is required.
No outcrops of basement rocks with such high density weredetected in the Neuquén Basin. However, Grenvillian (~1.0 Ga) basement composed of tonalite and trondhjemite were studied by Sato et al. (2000) in the Las Matras area (Fig 1), which is located 130 km north of Gobernador Duval. We interpret the Chimpay–Gobernador Duval High to be composed of basicintermediate rocks (seismic velocity 5400–6600 m/s) covered by sedimentary rocks deposited in the Jurassic–Cretaceous Neuquén Basin. Such igneous rocks could also explain positive magnetic anomalies, which range between 250 and 175 nT (Fig. 9) in this area.


Río Colorado High
Several relatively positive residual gravity anomalies (6, −8 and −11mGal) appears between PichíMahuida, Cerro LosViejos and Río Colorado (Kostadinoff and Llambías (2002) (Fig. 7A). These anomalies are considered to reflect Pampean basement, which is composed of small outcrops of amphibolite, gneiss, micaceous schist, phyllite and metasandstone of the Las Piedras Metamorphic Complex and granite and granodiorite of the Pichí Mahuida Group (Linares et al., 1980; Tickyj et al., 2002). The anomalies are due to relative uplift of blocks similar to those that occur in the Sierras Pampeanas de San Luis y Córdoba. TheNW– SE margin of RíoColoradoHigh is coincidentwith a steep gravity gradient (near 1 mGal/km) between Cerro Los Viejos and 38° S (Figs 7A and 8A, B). Fig. 7B shows the measured and the modeled anomalies in the Río Colorado High considering a density of 2.65 g/cm3 for the basement rocks. According to the geometries of the anomalies and the outcrops, the Río Colorado High is believed to represent a block-faulted system.
Refraction shots by YPF (numbers 20 to 25, Fig.6B) show the existence of basement rocks with high seismic velocity (5000 to 6000 m/s), which are interpreted as the Las Piedras Complex. This basement deepens to the south, reaching 700 m below the surface near the Huincul Fault zone. Magnetic anomalies are relatively low in this area and suggest the absence of paramagnetic rocks in the basement (Fig. 9).


Choele Choel High
The Choele Choel High (Kostadinoff et al., 2005) is a positive residual gravity anomaly of +10 and +15 mGal (Fig. 7A and B) with steep (2 mGal/km) gradients (Fig. 8A, B). The northern boundary is defined by the Huincul Fault Zone and lineament v“A” (Kostadinoff et al. 2005). The southern boundary (Figs 7A, B, 8 and 10) is a complex, arcuate system that is formed by 3 lineaments, which are defined by steep (1–2 mGal/km) gravity gradients (B, C and E: Fig. 10). The model of Fig. 7B requires a slighter increase in the basement rocks density to explain the measured anomaly and as showed in this figure the Choele Choel High represent an uplifted block.
Refraction shots by YPF in this area (Puesto Segatore to profile number 8, Fig. 6C) indicate the existence of rocks with seismic velocities of 4500 to 5320 m/s which are covered by Mesozoic–Cenozoic rocks. Such rocks exist at depths between 200 and 600 m in the eastern and southeastern parts of the Choele Choel High (Profiles 8 to RN19) and to a depth of 1000 m when approaching lineament “A”.

Candidates that fulfil such seismic velocity are the phyllite, muscovite-bearing schist, and metasandstone of the Las Piedras Complex that are exposed in the Río ColoradoHigh. The seismic velocities may also be explained by phyllite, metasandstone, marble and pelite of the Nahuel Niyeu and El Jaguelito formations (Fig. 3), which are temporally correlated with the Las Piedras Complex, and crop out in the Nahuel Niyeu–Valcheta area (Caminos and Llambías, 1984).
If ultramafic rocks were emplaced in a Pampean basement of this density (Table 1) an anomaly of more than 100 mGals could be expected. Most ultramafic belts in suture zones show values between +50 and +120 mGals (Gibb and Thomas, 1976, Kunar et al., 2004, Williams et al., 2006). However, this region does not display anomalies of this magnitude and the seismic profiles also do not suggest the existence of rocks with seismic velocities sufficient to be sourced from ultramafic rocks. The magnetic survey (Fig. 9) shows scarce magnetic anomalies, with maximum values of +75 nTand minimum values of−75 nT. These data also preclude the existence of mafic– ultramafic rocks in this area and are more consistent with a magnetic source such as the non-magnetic rocks such as Pampean low-grade metamorphic rocks.


Viedma High
Gravity anomalies from the Viedma High (Figs. 7A and 10) vary between 1 and 15 mGal, (Figs. 7A and 10), suggesting a density contrast caused by rocks with similar densities to that which caused the Choele Choel High. The contact between both of these gravimetric highs is defined by NW–SE and NE–SW lineaments that follow narrow belts with steep gravity gradients (Figs 7A, 8 and 10). Unfortunately, there are no seismic profiles located in this area, but outcrops in the nearby Salinas del Gualicho area (Fig. 3) belong to the Nahuel Niyeu Formation (Figs. 3 and 10). Minor outcrops of the Sierra Grande Formation and Gondwana igneous rocks are also present. Drill holes at O'Connor and Elvira (Kaasschieter, 1965) intersected lowgrade metamorphic rocks to a depth between 400 and 475 m. (Fig. 7).


The positive gravity anomalies associated with the Viedma High extend northwards (Kostadinoff and Labudía, 1991 and Kostadinoff, 1992) and link with positive gravity anomalies located to the west of Sierras Australes (Figs. 2, 3, 7A and 10). The Algarrobo drill hole, and refraction data near Bahía Blanca (Estancia El Recuerdo and Puerto Belgrano, Bonorino et al, 1987), indicates seismic velocities similar to those that are interpreted to be the source of the Choele Choel High (i.e. lowgrade metamorphic rocks of the Las Piedras Metamorphic Complex).

The distribution of positive anomalies in the Viedma High and in the Choele Choel High supports the interpretation that a belt of Pampean rocks extends from the southern part of the Buenos Aires province to northern Patagonia (Figs. 3 and 10).


Negative anomalies

Neuquén Basin
The Mesozoic Neuquén Basin (Figs 2, 7A and 10) is characterized by gravity lows between −54 mGal and −32 mGal. Seismic data (Fig. 6D) and drill hole information indicate that the sedimentary sequences reach an approximate thickness of 3000 m. Negative gravity anomalies (−41 mGal) near Chelforó represent small depocenters, whose thicknesses decrease to 750 m near Chimpay (Fig. 7A). Magnetic anomalies in this area vary between −125 and +125 nT (Fig. 9) and are attributed to the presence of Fe-oxides in the Cretaceous Neuquén Group (400 m thick) that covers this portion of the basin.


Carapacha Basin
The scarce outcrops of the Permian continental Carapacha Basin and the volcanic rocks near Puelches in La Pampa province (Fig. 4) are coincident with negative gravity anomalies (−40 to −30 mGal: Fig. 7A). The density contrast between these rocks and those of the Pampean basement is relatively low (Table 1 and Fig. 7B), which led to Kostadinoff et al. (2001) to estimate a thickness of 2700 m for this basin.

This is substantially more than the 900 m thickness estimated by Melchor (1999). Based on these results, Kostadinoff and Llambías (2002) considered the subsurface extent of the basin to be greater than that suggested its surface extent.
Therefore, the gravimetric minimums of −41, −31 and−40 mGal located northeast of Gobernador Duval, as well as those located west of Cerro Los Viejos and Pichí Mahuida (−41 and −36 mGal), possibly represent an extension of the Carapacha Basin (Figs. 7A, B and 10). In the Carapacha Basin, the Gondwana volcanic rocks unconformably overlying the Paleozoic sedimentary sequences in the Carapacha Basin and are interpreted to contribute to the negative anomalies. The magnetic anomalies (−275, −225 and −125 nT: Fig. 9) are due to the low susceptibility of the Paleozoic sedimentary rocks and the Gondwana acidic volcanic rocks.


Estancia El Caldén Basin

A relatively small negative residual gravity anomaly (−24 mGal: Fig. 7A) is located near the Estancia El Caldén (Kostadinoff et al., 2005), north of the Huincul Fault Zone. A density contrast of −0.2 g/cm3 between the Pampean basement and the Mesozoic sedimentary units suggests a sedimentary thickness of 1700 m (Figs. 7A and 10). Refraction data in this area (Fig. 6E) indicate a greater than 1000 m thick sedimentary pile. The seismic data suggest velocities consistent with Lower Cretaceous and Upper Tertiary sedimentary successions, which cover the Paleozoic rocks.


Ramos Mexías anomaly
The Ramos Mexías anomaly is part of a continental-scale anomaly (500 km in diameter), located in the south-western part of the North Patagonian Massif (Blitzkow et al., 1994). The Ramos Mexías anomaly corresponds to a large area of several negative gravity anomalies (−46 mGal to −35 mGal, Figs. 7A and 10) located south of the lineament “B) (Fig. 10). Outcrops include Pampean metamorphic rocks and Gondwana intrusive and volcanic rocks. The metamorphic rocks belong to the Nahuel Niyeu Formation and include micaceous and amphibolite schist, marble, and amphibolites. The intrusive rocks (minor tonalite, granodiorite and granite) belong to the Gondwana Navarrete Plutonic Complex. The volcanic rocks (acidic ignimbrite) are part of the Treneta Volcanic Complex (Caminos et al., 2001) and the Triassic volcaniclastic Los Menucos Complex (Cucchi et al., 1999).

Lagunas Dulces anomaly
The Lagunas Dulces anomaly is a negative gravity anomaly (−20 mGal) that is located north-eastwards of San Antonio Oeste (Figs. 7A and 10). This anomaly is interpreted to be caused by the Lagunas Dulces Granite (Kostadinoff, 1992). A drill hole at this locality intersected granitic rocks (249±10 Ma: Kaasschieter, 1965) at a depth of 370 m. Because the geometry and magnitude of this anomaly is similar to those coincident with outcrops of the Gondwana Navarrete Granodiorite, we interpret the Lagunas Dulces anomaly to be caused by intrusion of Gondwana granitic bodies in the Pampean basement.


Bajo de Valcheta anomaly
The Bajo de Valcheta anomaly is a negative anomaly of the order of −10 mGal, located between the Viedma High and the Ramos Mexías anomaly. The area is coincident with outcrops of the low-grade metamorphic rocks of the Nahuel Niyeu Formation (Figs. 7A,B and 10). According to the model in Fig. 7B a density of 2.65 g/cm3 is required to satisfy the observed anomalies. No significant magnetic anomalies (Fig. 9) can be recognized at this location.

Laguna del Zorro anomaly
The Laguna del Zorro gravity anomaly (Figs. 7A and 10) is located to the north-west of the Viedma High and is bounded by lineament “C” (Fig. 10). The geometry and magnitude of the anomaly is similar to the Lagunas Dulces anomaly and is therefore interpreted to be sourced from the same or similar Gondwana intrusive body.

 

Belts of steep gravity gradients
In order to validate the continuity of the Huincul Fault zone and other structural lineaments proposed by Turner and Baldis (1978), we focused on areas with steep gravity gradients in the gravity anomaly map. Such steep gradients are usually interpreted as representing fault structures (Nettleton, 1976), boundaries of rocks with contrasting petrophysical characteristics or sutures (Gibb and Thomas, 1976, Wellman 1978, Coward and Fairhead
1980, Gibb et al. 1983). Differences in density or thickness between blocks are often responsible for steep gradients (Gibb and Thomas, 1976, Thomas, 1983, Kunar et al. 2004, Williams et al., 2006). Values between 0.5 and 2 mGal/km, were obtained using the gradient and second derivate operator. A 3D image generated using Surfer 8™ (Fig. 8B), show several lineaments defined by belts with steep gravity gradients.
Table 2 indicates the name, location, gradient, any surface evidence and possible age of each lineament, while their location is shown in Fig. 10.

Three main lineament orientations directions can be recognized: lineaments A and C are NE–SW trending; lineaments B, D and E are NW–SE trending; and lineaments F, G and the Huincul Fault zone are E–W trending.
The E–W lineaments exhibit more complex geometries than the other lineaments. Most lineaments form the boundary of the Choele Choel High (e.g. A, B, C, E and the Huincul Fault zone).


Huincul Fault zone
Because the Huincul Fault zone (Kostadinoff et al., 2005)
crops out in the Neuquén Basin (Windhausen, 1914 and Keidel, 1925), its configuration and kinematics are relatively well constrained. The Huincul Fault Zone displays dextral strike-slip movement (Orchuela and Ploszkiewicz, 1984) and a zig-zag along strike pattern (Figs. 2 and 10). This pattern suggests that both transtensional and transpressional conditions occurred during fault movement, resulting in the contemporaneous development of positive and negative flower structures. This fault system was active from Upper Paleozoic–Triassic times, as recorded by continental depocenters associated with the transtensional subsidence (Vergani et al. 1995).
Its eastwards continuity was suggested by Turner and Baldis (1978), and established by Orchuela and Ploszkiewicz (1984) based on interpretation of seismic reflection data. The high gravimetric gradients between Neuquén and Cubanea (Figs. 7, 8B and 10) support the continuity of the Huincul Fault Zone until 63° 40´W, with maximum gradients (2 m Gal/km) between the Neuquén Basin and 64° 45´W–39° 20´S.
The section between Neuquén and Chimpay shows a smooth releasing bend (Fig. 10), that changes to a restraining bend in the Chimpay 63° 40´W section. The gravity anomalies are discontinuous along the fault zone. In the area between Chimpay and Cubanea, the differences in magnitude of the anomaly between the Choele Choel High and the Carapacha Basin and the Río Colorado High mark the trace of this fault zone. In the section between Chimpay and Neuquén, such differences in the anomalies are less evident, but high gravimetric gradients (2 mGal/km) are interpreted to reflect the location of the fault zone.


Magnetic anomalies are diffusely coincident with the interpreted fault zone between 5 and 10 km north of Chichinales and Choele Choel. These anomalies are low-amplitude (175 to 75 nT, Fig. 9) and are interpreted to be related to the Albian– Coniacian red beds of the Neuquén Group, which contain abundant Fe-oxides (hematite). The sediments have a magnetic susceptibility of 0.006500 SI (Telford et al., 1990), which is
sufficient to explain the magnitude of the magnetic anomalies.
These low-magnitude anomalies do not compared magnetic anomalies typically observed in sutures zones because suture zones are generally composed by serpentinite zones associated with sheared peridotites, which have a magnetic response N500 nT (Ferraccioli et al., 2002).

The Huincul Fault zone is therefore unlikely to be a suture. In the Neuquén–Chichinales section (Fig. 10) the
Neuquén Group is 1000 m thick, but in the cliffs located south of the Rio Negro, only the upper section of this unit crop outs. In contrast, the area north of the fault zone, Upper Cretaceous–Lower Tertiary marine Malargue Group crop out, suggesting more than 500 m of vertical displacement across a fault zone.

Due to the outline of the Huincul Fault Zone, the section between Plaza Huincul and Picún Leufú (Fig. 10) and between Neuquén and Chimpay represent domains of dextral transpressive shear (Orchuela and Ploszkiewicz, 1984), where basement rocks are exposed in the fault zone. In the section between
Chimpay and 64° 15´W, deformation appears to be transtensional based on the existence of small depocenters associated to the fault zone.


Mylonitic belts and lineaments with steep gravimetric and high magnetic gradients in northern Patagonia, southern La Pampa and Buenos Aires provinces
Northern Patagonia is characterized by the presence of several mylonitic belts and regional structural lineaments, whose geometries, deformational mechanisms and age mostly remains unclear (Fig. 11). The better-known of these lineaments and mylonites include:

a) Pangaré and La Seña mylonites (Gregori et al., 2000), are formed by two belts, each 1 km wide, 15 km long, and comprising granitic augen-mylonites, protomylonites, mylonites and ultramylonites, (Figs 10, 11 and 12A) with strikes between 310° and 330°. They exhibit sinistral movement associated with an east–west compression

b) Peynecura mylonitic belt (Llambías et al., 2002) is more than 500mwide, 15 kmlong, and has aNNW–SSE strike (Fig. 11). The deformation is interpreted to have occurred during the Early Triassic because is related to foliated granites of such age. No information about strain orientation is available.

c) The El Jaguelito Fault zone is a 50 km long NW–SE dextral lineament that appears in the eastern area of the North Patagonian Massif (Fig. 11). According to Ramos and Cortés (1984), deformation occurred during Upper Paleozoic times.

d) Peñas Blancas and La Laguna mylonites are described by Giacosa (1996). They are 10 km long, and are temporal related to the foliated Permian-aged Peñas Blancas and La Laguna Granites. Four more NW–SE mylonitic belts were recognized during regional mapping in this area, but information on strain orientation is unavailable. The timing of deformation is interpreted to be Gondwanan because the foliated granites were intruded at the same time as mylonitization occur.

e) The Nahuel Niyeu lineament system is a major structure that is 25 km wide, and extends for 65 km long (Figs. 10 and 11) between the Salinas Trapalcó–Laguna Curicó Lineament (Figs. 1, 2 and 12A) and the Somoncura Plateau (Fig. 2). Nahuel Niyeu lineament includes the Arroyo Seco, Barda de Lucho, Arroyo Salado, Laguna Negra, Quiroga and Ramos lineaments, the Tardugno, Musters and Huanteleo faults and the Nahuel Niyeu, Railer and Rana thrust sheets (Fig. 10).

In the La Pampa province, a mylonitic belt was described in Cerro de los Viejos (Figs. 11 and 12A) by Tickyj et al. (1997). A further four belts of steep gravity gradients which were interpreted as major structures were described by Kostadinoff et al. (2001). These four belts include:


a) The Quehué lineaments is a 350 km long, 15 km wide. It is defined in the gravity data by a 2 mGal/km gradient which defines a structure interpreted to represent the boundaries of the Triassic Quehué basin.

b) The Valle Daza-Cuchillo Có lineament is a 310–320° trending belt that is 100 km long and characterised by a steep gradient in gravimetry data. This lineament is interpreted to represent the western boundary of the Rio Colorado High (Figs. 11 and 12A).

c) The Cerro los Viejos lineament extends in a NW-direction for more than 100 km from Cerro Los Viejos and is possibly related to the Cerro Los Viejos mylonite. According to Kostadinoff and Llambías (2002), the Cerro los Viejos lineament represents the contact between the Permian Carapacha Basin and the Río Colorado High. This lineament and its associated steep gravity gradient disappears in the central part of the La Pampa province, but is identified near Algarrobo del Aguila (Fig. 11) as a 50 km long, 15 km wide lineament with steep gravity gradient. This NW-trending structure is considered to be the boundary of a Triassic basin (Kostadinoff and Llambías, 2002).

d) The Macachín Rift includes Paleozoic and Mesozoic sedimentary sequences deposited in a NNW–SSE extensional basin (Figs. 11 and 12A). Outcrops of igneous and sedimentary Gondwanan rocks in the central part of the La Pampa province (Figs 2 and 4) follow WNWor NW trends, which suggest structural control.

In the Buenos Aires Province strike-slip faults located north and south have been used to explain the structure of the Sierras Australes. For example, Newton and Cingolani (1990) showed a series of WNW–ESE trending sinistral strike-slip faults near Pigue and Cerros Colorados (Figs. 11 and 12A), which are evident in gravity data (Alvarez, 2004).

In the Bahía Blanca area, Bonorino et al. (1987) showed the occurrence of several lineaments with steep gravity gradients south of Sierras Australes. Lineaments of importance include the Salitral de la Vidriera and Nueva Roma belts, which are strike-slip fault zones longer than 100 km in strike extent (Fig. 11).


Gondwana deformation in the Neuquén Basin, northern Patagonia and southern La Pampa and Buenos Aires provinces

Windhausen (1914), Keidel (1925) and Groeber (1929) described NE–SW structures transverse to the N–S Andean
Orogeny in the Neuquén Basin (Figs. 11 and 12A). According to these authors, as well as Herrero Ducloux (1946) and De Ferraris (1947) the stratigraphic nd structural evidences suggest folding during the Cenomanian or the Middle Jurassic.
They observed that the structures mimic the northwestern and northern border of the North Patagonian Massif and that they possibly formed during NW- and N-directed lateral translation of the massif. These structures were grouped in the “Dorsal de Huincul” (Huincul Fault zone) by De Ferraris (1947).


In the North Patagonian Massif, the Gondwana deformation is recorded by the Pangaré and La Seña mylonites. Clearly defined δ and σ type porphyroclasts of K-feldspar, and shaped lenses of Qz–K-feldspar, support sinistral movement. These belts and the associated foliated granite (Gregori et al., 2000) indicate maximum compression (σ1) in a WNW–ESE direction (Fig. 12A) during Middle to Upper Triassic (Saini-Eidukat et al., in press). In the El Jaguelito Fault zone, the fault pattern suggests a dextral transcurrence along N 310° (Fig. 12A) during Upper Paleozoic times (Ramos and Cortés, 1984). SE, S and SW vergence occurred along the Nahuel Niyeu lineament system (Fig. 12A), each of which was related to three phases of deformation, with pr inciple shortening directions in NE–SW, NW–SE and E–W directions during Permo-Triassic times (von Gosen, 2003).


In the Sierra Grande area, the Pampean El Jaguelito Formation contains evidence which supports a D1 event that was generated byNW–SE or E–W shortening (Giacosa and Paredes, 2001, von Gosen, 2002). In the same area, the Famatinian Sierra Grande Formation is folded around open synclines and anticlines that have N–S trending axial traces (Fig. 12A). The Permian Laguna Medina granite intrudes the Sierra Grande Formation and records a ductile E–W shortening deformation event, which was coincident with deformation of the Sierra Grande Formation (Rossello et al., 1997, von Gosen, 2002).
Transport directions from NE to SW during the Gondwana deformation was accommodated along mylonites within the Peñas Blancas and La Laguna Granites (Giacosa, 2001, von Gosen, 2002).


In the North Patagonian Massif, the Sierra Grande Formation, the Laguna Medina Granite and foliated granites and mylonites in the Estancias La Seña and Pangaré area all indicate shortening in aWNW–ESE or E–Wdirection (Fig. 12A). The mylonites in the Peñas Blancas and La Laguna Granites and thrust sheets and faults in the Nahuel Niyeu area are related to a N–S or SW–NE shortening (Fig. 12A) (Giacosa, 2001, von Gosen, 2002).

In the La Pampa Province, the Carapacha Basin (Figs. 4, 11 and 12A) exhibits a NW–SE elongation, suggesting basin development occurred during NE–SWdirection extension. Folding of the sedimentary successions and inversion in the Carapacha Basin (Melchor, 1999) and mylonitization of the Cerro de los Viejos granite (Tickyj et al., 1997) dated as Late Permian (254±2 Ma), suggests that both areas were affected by the same deformational phase (Fig. 12A) related to a NE–SW shortening.

In the Sierras Australes of Buenos Aires Province, the Pillahuincó Group (Carboniferous-Permian) was deformed (Fig. 12A) between the late Early Permian and the early Late Permian (Tomezzoli and Vilas, 1996). Deformation generated a sigmoidally-shaped mountain chain. Folding and overthrusting occurred during NE vergence (von Gosen et al., 1990). This deformation was related to sinistral transpressive deformation (Sellés Martinez, 1989) along theWNW–ESE Pigué transcurrent fault system (Alvarez, 2004) and the Salitral de la Vidriera and Nueva Roma transcurrent fault systems (Bonorino et al., 1987).


The deformation was interpreted to be related to transpressive movement of the “Patagonian block” relative to the South American craton during Permo-Triassic time (Martinez, 1980), although little supporting evidence was provided. Sellés Martínez (1989) considered the deformation in Sierras Australes to be due to a transpressive regime between the Patagonian block and the South American craton during the Late Permian oblique subduction.
Detailed structural studies in the Sierras Australes define a sigmoidal belt, with fold trends rotating N60° clockwise, from WNW to NNW, a configuration attributable to dextral transpression (Cobbold et al., 1986, 1991, 1992). Inferred directions of principle shortening are oblique to the orogenic belt, and to the convergent southern margin of Gondwana and are interpreted to result from oblique (dextral) subduction beneath an Andean-type margin (Cobbold et al., 1992, Craddock et al., 1998).


Consequently, the sedimentary basins, the emplacement of the Gondwana intrusive and volcanic rocks and the regional structure north of the Colorado and Negro rivers are related to a first SW–NE extension (Fig. 4), which later switched to a shortening regime in a NE–SW or N–S direction (Fig. 12A).

In their structural analysis of northern Patagonia, Turner and Baldis (1978) identified several NW–SE lineaments in the area between Bajo del Gualicho and Golfo San Matías (Fig. 2). They suggested variable compressive stresses in the North Patagonian Massif including: west-shortening directed (Río Limay area); northeast-directed shortening (Salinas del Gualicho); eastdirected shortening (Sierra Grande); and southwest-directed shortening (El Cuy). The variation in stress directions is attributed to counterclockwise rotation of the North Patagonian Massif (Fig. 12A).


Deformation in the southern area of the Gondwana supercontinent
The first detailed reconstruction of the relative position of Africa and South America during the Upper Paleozoic was given by du Toit (1927). The continuity of an orogenic system was extended from South America to Australia, passing just south of the Permo-Triassic fold belts, introducing the name of Samfrau Orogenic Zone (du Toit, 1937). This belt is nearly equivalent to what we understand today as the Gondwanide Orogenic Belt (du Toit, 1937).
In the South African segment, the arrangement of the Gondwanide Orogenic Belt and the associated basins is strongly conditioned by the configuration of older basements blocks (Kaapvaal, ≥2.5 Ga, Namaqua-Natal, ≈1 Ga and Gariep, Saldania and Mozambique, 1–0.5 Ga). The Ordovician–Devonian Cape Basin follows a main W–E trend along the Saldania province with branches to the NWand NE. The Cape Fold Belt includes southern and western tectonic domains (Söhnge, 1983), separated by the Cape Syntaxis (Fig. 12b), across which the structural strike, and the intensity of deformation changes markedly (de Beer, 1995). The southern domain extends from the eastern margin of the Cape Syntaxis to Port Elizabeth and is characterized by east–west-trending, north-verging structures including bedding- parallel thrusts and north-verging folds (Fig. 12B).

No evidence for dextral shearing was found in this domain. In the western domain, strata is mildly deformed (de Beer, 1992). Folds and faults trend northwest to north (de Beer, 1990). North-trending slickensides developed on thrust planes (Ransome and de Wit, 1992) and stretching lineations (Cobbold et al., 1992) indicate a component of strike-parallel displacement.
The pattern of folds, faults and lineations are consistent with overall dextral strike-slip deformation (Cobbold et al., 1992). The Cape Syntaxis is a northeast-trending structural domain that separates the southern and western domains (de Beer, 1995). Based on a reconnaissance of the structure of the syntaxis and adjacent domains, Ransome and de Wit (1992) proposed a model in which the continental crust to the west of Cape Syntaxis was rotated clockwise during syntaxis formation, while crust immediately east is rotated counter-clockwise.

In the Malvinas (Falkland) Islands, Late Permian fold and thrust belt structures form the eastward continuation of the Cape Fold Belt when restored into a pre-Gondwana break-up configuration. Detailed structural studies by Curtis and Hyam (1998) and Hyam (1998) suggest that these structures developed in a complex strain system of combined NW–SE shortening and dextral shear.

In Antarctica, the Gondwanide Orogen extends through the Ellsworth–Whitmore Mountain block and the Pensacola Mountains (Curtis and Storey, 1996). During Gondwanide orogenesis the Ellsworth–Whitmore Mountain block is assumed to have occupied a site intermediate between the more easterly Falkland Islands and the more westerly Pensacola Mountains (Curtis and Storey, 1996). Structural analyses (fold orientation, shortening directions and strain partitioning) indicate contemporaneous development of gently plunging foreland-verging folds and asymmetric, steeply plunging folds symptomatic of deformation within a highly oblique dextral transpressive belt (Curtis, 1997, 1998, Craddock et al., 1998).
Dextral transpressional structures are evident throughout much of the Gondwanide Belt, suggesting a component of dextral transpressional during the evolution of this orogenic belt. Johnston (2000) indicated that the east–west-trending domain of the Cape Fold Belt ends to the west and east against the northwest-trending South American and Antarctic portions of the Gondwanide Orogen respectively.


Tectonic model
The diverse shortening directions and lateral crustal translations during Gondwana time north and south of the interpreted boundary between northern Patagonia and Gondwana South America cannot be explained as the result of homogeneous stress regime (i.e. NE–SW compression due to the subduction and collision of Patagonia with the southern margin of Gondwana South America) as speculated by Ramos (1984), and von Gosen (2002, 2003).
All lineaments plotted in Fig. 11 (those both related and unrelated to mylonites, and the belts with steep gravity and magnetic gradients, presumably active during Gondwana times) suggest a lineament network that defines a block system (Fig. 12A).
This collage of continental crustal blocks and its movement was the result of a tectonic event that produced crustal fragmentation.
The geometry of individual blocks controlled the blockmovement and therefore the development of mylonite belts and other lineaments. In order to explain the variable stress regime in which zone of compressional and extensional tectonism were active at the same time over such a large area, we require movement of crustal blocks along arcuate strike-slip faults (Fig. 12A).


This style of deformation is common during collisional orogeny, where frontal zones are deformed during indentor tectonics, where the lateral terminations of the indentor involve extensive escape tectonics (Ratschbacher et al., 1991). The size and shape of the continental fragments involved, the orientation of the indentor, and the collision vector, influence the extent and geometry of indentation and later escape.
Modern examples of large-scale indentation-escape orogens are found in the Himalaya-Alpine belt. These models include the collision of the Arabian and the European plates (west-directed escape) and the east- and southeast-directed escape of southeast Asia following the collision of India and Asia (Tapponnier and Molnar, 1976). The transcurrent shear zones separating elongate crustal slices are the most important large-scale structural features in these Himalaya–Alpine models.
Indentation-escape tectonics is widely observed and accepted in younger orogens, but has not been recognized to the same extent in older mountain belts, probably because the structures associated with such a tectonic regime are less obvious. In addition, subsequent orogenic eventsmay obscure the presence of an ancient indentation-escape regime (Ratschbacher et al., 1991).
Several examples of Precambrian indentation-escape tectonics have been described. In southern Africa, the proto-Kalahari craton acted as a southwest-directed indenter into juvenile Mesoproterozoic island-arc terranes at ca. 1100 Ma (Jacobs et al., 1993).

The associated escape tectonics regime in the orogen is shown by extensive craton-parallel ductile shear zones and the development of pull-apart basins in the preserved African foreland (Koras– Sinclair basins). Other example of indenter-escape tectonic has been reported in Australia, where the Yilgara craton indented the Pilbara–Gawler craton during the late Paleoproterozoic Capricorn orogeny (Krapez, 1999). Another example is the East African–Antarctic orogen, which resulted from the collision of various parts of proto-East and West Gondwana during late Neoproterozoic–early Paleozoic time (between 650 and 500Ma).
The southern part of this Himalayan-type orogen can be interpreted in terms of a lateral-escape tectonic model. Small microplates (the Falkland, Ellsworth–Haag, and Filchner blocks) probably represent shear-zone-bounded blocks produced by tectonic translation during lateral escape, similar to those currently evolving in Southeast Asia.


Assuming a model of indentation-escape tectonics for northern Patagonia, the belts with steep gravity gradients described in this study represent transcurrent shear zones separating shear-zone bounded blocks (Figs. 11 and 12A). The block situated between lineaments C, D and E has possibly acted as a northwest-directed indenter associated with west-directed movements of the area located south of the Huincul Fault zone. Several small blocks were displaced west and southwest, possibly the western sector of theChoeleChoel High and the areas located west of the lineAand southwest of line B, as recorded in the La Seña–Pangaré mylonites and Nahuel Niyeu system (Fig. 12A).
The eastern sector of the Choele Choel High, between the Huincul Fault zone and lineament E was displaced to the east and southeast during lateral escape. In areas of transpression, such as along the Huincul Fault Zone between Estancia El Caldén and Chimpay (Fig. 10), rocks were faulted upwards to form positive flower structures. Such a configuration can explain the uplift of the Choele Choel High against the Carapacha Basin and accounts for the change of detritus composition as detected in the Carapacha and Claromecó Basins (Rossello et al, 1997, Melchor, 1999).
It seems probable that some blocks in the North Patagonian Massif, located south of the Huincul Fault Zone, rotated counterclockwise during Permo-Triassic time (Fig. 12A). It is doubtful that the deformation can be explained in terms of the collision of two major crustal blocks, principally because there is no conclusive evidence for such a collision.


The development of the Gondwanide deformation in northern Patagonia–Sierras Australes–La Pampa province in a location far from the active convergent margin of Gondwana is attributable to two factors: a) dextral margin-parallel translation of a crustal block or blocks (Fig. 12A and B) outboard of the Gondwanide Orogen; and b) the oblique orientation of this area relative to the east–west trend (present coordinates) of the
orogen in the Cape Fold Belt, as shown in Fig. 12B.


Coincidences in timing of deformation and the orientation of principal stress directions, point to an evolutionary history that is similar to other portions of the Gondwanide Orogen (de Wit and Ransome, 1992; Cobbold et al., 1991, Vaughan and Pankhurst, 2008).
In the southern Canadian Rocky Mountain fold and thrust belt, Late Cretaceous and Tertiary deformation developed ~1500 km inboard of the active convergent margin (McMechan and Thompson, 1989). Oblique (dextral) subduction of oceanic plates beneath western North America resulted in the development of major dextral strike-slip faults within the overriding North American crust. The development of this fold and thrust belt 1500 km inboard of the cordilleran margin in response to oblique subduction-driven, margin-parallel dextral translation was considered as an analogue for development of the Cape Fold Belt (Johnston, 2000). According to the evidence presented here, this model can also be applied to northern Patagonia. However, the relatively extensive width of this active margin is at present not fully understood.


Conclusions
North–South belts of Pampean and Famatinian rocks that cross the supposed boundary between the northern Patagonia and central Argentina regions support the presence of a common continental crust in both areas. No geological or geophysical evidences for oceanic crust formed by mafic– ultramafic rocks between both areas have been identified. The gravity and magnetic anomalies over the supposed boundary are incompatible with a suture composed of such rocks.
The continental crust in the studied area was sliced by displacements along the dextral Huincul Fault Zone and several minor lineaments that represent strike-slip faults along the boundaries of several continental blocks. South of the Huincul Fault Zone, the indentation of these blocks, related to the translation and simultaneous counterclockwise rotation along a NW-direction produced escape of minor slices in W, SW, E, SE, and N directions. Such movements are recorded in Gondwana rocks and mylonitic belts around northern Patagonia.
Transpression in the northern part of the massif possibly produced positive flower structures, e.g.: the Choele Choel High or those recognized in the Neuquén Basin.

The balance of evidence suggests that the Gondwanide Orogeny in the northern Patagonia area is due to the transtensive– transpressive deformation. The dextral strike-slip component detected in the northern Patagonia–Sierras Australes, Cape Fold Belt (Africa), and in the Ellsworth Whitmore Mountains block (Antarctica), may reflect margin-parallel strike-slip movements induced by oblique subduction (Cobbold et al., 1991, 1992) beneath the convergent southern margin of Gondwana.

 

 

Reinterpretacion de Ramos (2008) sobre aloctonía de Patagonia y configuración tectónica de Patagonia

vc

xvc xcvxvx

Mas información en: Victor A. Ramos, 2008. Patagonia: A paleozoic continent adrift? Journal of South American Earth Sciences. 26: 235–251

 

BIBLIOGRAFIA RELACIONADA A LA CONFIGURACIONDE UNIDADES Y A LA ALOCTONIA-AUTOCTONIA DE PATAGONIA

  • Almeida, F.F.M.de, Hasui, Y., Brito Neves, B.B., 1976. The Upper Precambrian of South America. Universidade de Sao Paulo, Instituto de Geociencias, Boletim, vol. 7, pp. 45–80.
  • Andreis, R.R., Cladera, G., 1992. Las epiclastitas pérmicas de la cuenca Sauce Grande (Sierras Australes, Buenos Aires, Argentina), Parte II: Emplazamiento tectónico de las áreas de aporte. 4 Reunión Argentina de Sedimentología, La Plata, Actas 1, pp. 135–142.
  • Andreis, R.R., Archangelsky, S., González, C.R., López Gamundi, O., Sabattini, N., Aceñolaza, G., Azcuy, C.L., Cortiñas, J., Cuerda, A., Cúneo, R., 1987. Cuenca Tepuel– Genoa. In: Archangelsky, S. (Ed.), El Sistema Carbonífero de la República Argentina. Academia Nacional de Ciencias, Publicación Especial, pp. 169–196.
  • Andreis, R.R., Iñiguez, A.M., Lluch, J.L., Rodríguez, S., 1989. Cuenca paleozoica de Ventania, Sierras Australes, provincia de Buenos Aires. In: Chebli, G., Spalletti, L. (Eds.), Cuencas Sedimentarias. Universidad Nacional de Tucumán, Serie Correlación Geológica, Tucumán, vol. 6, pp. 265–298.
  • Armstrong, R.A., de Wit, M.J., Reid, D., York, D., Zartman, R., 1998. Cape Town’s Table Mountain reveals rapid Pan-African uplift of its basement rock. Journal of African Earth Sciences 27 (1), 10–11.
  • Augustsson, C., Bahlburg, H., 2008. Provenance of late Palaeozoic metasediments of the Patagonian proto-Pacific margin (southernmost Chile and Argentina). International Journal of Earth Sciences (Geologische Rundschau) 97, 71–88.
  • Augustsson, C., Münker, C., Bahlburg, H., Fanning, C.M., 2006. Provenance of Late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U–Pb and Hf-isotope study of single detrital zircons. Journal of the Geological Society 163, 983–995.
  • Bangert, B., Stollhofen, H., Lorenz, V., Armstrong, R., 1999. The geochronology and significance of ashfall tuffs in the glaciogenic Carboniferous–Permian Dwyka Group of Namibia and South Africa. Journal of African Earth Sciences 29, 33–50.
  • Basei, M.A.S., Brito Neves, B.B., Varela, R., Teixeira, W., Siga Jr., G., Sato, A.M., Cingolani, C.A., 1999. Isotopic dating on the crystalline basement rocks of the Bariloche Region, Río Negro, Argentina. 2o Simposio sudamericano de geología isotópica (Carlos Paz), Servicio Geológico Minero Argentino, Anales, vol. 34, pp. 15–18.
  • Basei, M.A., Varela, R., Passarelli, C., Siga Jr., O., Cingolani, C., Sato, A., Gonzalez, P.D., 2005. The crystalline basement in the north of Patagonia: isotopic ages and regional characteristics. In: Pankhurst, R., Veiga, G. (Eds.), Gondwana 12: Geological and Biological Heritage of Gondwana, Abstracts, Academia Nacional de Ciencias, Córdoba, p. 62.
  • Bellosi, E.S., Jalfin, G.A., 1989. Cuencas neopaleozoicas de la Patagonia extraandina e Islas Malvinas. In: Chebli, G., Spalletti, L. (Eds.), Cuencas Sedimentarias. Universidad Nacional de Tucumán, Serie Correlación Geológica, Tucumán, vol. 6, pp. 379–394.
  • Buggisch, W., 1987. Stratigraphy and very low grade metamorphism of the Sierras Australes of the Province of Buenos Aires, Argentina and implications in Gondwana correlations. Zentralblatt Mineralogie Geologie Paläontologie 1, 819–837.
  • Burckhardt, C., 1902. Traces géologiques d’un ancien continent pacifique. Revista del Museo de La Plata 10, 179–192.
  • Cagnoni, M.C., Linares, E., Ostera, H.A., Parica, C.A., Remesal, M.B., 1993. Caracterización geoquímica de los metasedimentos de la Formación Nahuel Niyeu: Implicancias sobre su proveniencia y marco tectónico. 12 Congreso Geológico Argentino y 2 Congreso de Exploración de Hidrocarburos, Actas 1, pp. 281–288.
  • Caminos, R., Llambías, E., 1984. El basamento cristalino. In: Ramos,V.A. (Ed.), Geología y recursos naturales de la provincia de Río Negro. 9 Congreso Geológico Argentino, Relatorio, Buenos Aires, pp. 37–63.
  • Caminos, R., Llambías, E.J., Rapela, C.W., Parica, C.A., 1988. Late Paleozoic Early Triassic magmatic activity of Argentina and the significance of new Rb/Sr ages from Northern Patagonia. Journal of South American Earth Sciences 1 (2), 137– 146.
  • Cawood, P.A., 2005. Terra Australis orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews 69, 249–279.
  • Cerredo, M.E., López de Luchi, M.G., 1998. Mamil Choique granitoids, southwestern North Patagonian Massif, Argentina: magmatism and metamorphism associated with a polyphasic evolution. Journal of South American Earth Sciences 11 (5), 499–515.
  • Charrier, R., Pinto, L., Pía Rodríguez, M., 2007. Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno, T., Gibbons, W. (Eds.), The Geology of Chile. The Geological Society, London, pp. 1–114.
  • Chernicoff, J., Zapettini, E., 2004. Geophysical evidence for terrane boundaries in South-Central Argentina. Gondwana Research 7 (4), 1105–1117.
  • Chotin, P., Giret, A., 1979. Analysis of northern patagonian transverse structure (Chile, Argentina – 38 to 42 s.l.) from landsat documents. 7 Congreso Geológico Argentino (Neuquén), Buenos Aires, Actas 2, pp. 197–202.
  • Cingolani, C., Varela, R., 1973. Examen geocronológico por el método rubidio estroncio de las rocas ígneas de las Sierras Australes bonaerenses. 5 Congreso Geológico Argentino, Buenos Aires, Actas 1, pp. 349–371.
  • Cingolani, C., Varela, R., 1976. Investigaciones geológicas y geocronológicas en el extremo sur de la isla Gran Malvina, sector cabo Belgrano (Cabo Meredith), Islas Malvinas. 6 Congreso Geológico Argentino, Buenos Aires, Actas 1, pp. 457–474.
  • Compton, J.S., 2004. The Rocks and Mountains of Cape Town. Double Storey Books, Cape Town, 112 pp.
  • Coney, P.J., Jones, D.L., Monger, J.W.H., 1980. Cordilleran suspect terranes. Nature 288, 329–333.
  • Cortiñas, J.S., 1996. La cuenca de Somuncurá – Cañadón Asfalto: sus límites, ciclos evolutivos del relleno sedimentario y posibilidades exploratorias. 13 Congreso Geológico Argentino y 3 Congreso de Exploración de Hidrocarburos, Buenos Aires, Actas I, pp. 147–163.
  • Cortiñas, J.C., Arbe, H.A., 1982. Facies y paleoambientes sedimentarios del grupo Río Genoa, Pérmico Inferior de la región de Nueva Lubecka, provincia de Chubut. Revista de la Asociación Geológica Argentina 37 (3), 300–312.
  • Dalla Salda, L., Cingolani, C., Varela, R., 1990. The origin of Patagonia. Comunicaciones, Una revista de geología andina 41, 55–61.
  • Dalla Salda, L.H., Varela, R., Cingolani, C.A., 1992a. Los granitoides de Chasicó Mencué, Macizo Norpatagónico, Río Negro, Su importancia geotectónica. Revista de la Asociación Geológica Argentina 46 (1–4), 189–200.
  • Dalla Salda, L., Cingolani, C.A., Varela, R., 1992b. El basamento cristalino de la región nordpatagónica de los lagos Gutiérrez, Mascardi y Guillelmo, provincia de Río Negro. Revista de la Asociación Geológica Argentina 46 (3–4), 263–276.
  • Dalla Salda, L., Varela, R., Cingolani, C.A., Aragón, E., 1994. The Río Chico Paleozoic crystalline complex and the evolution of Northern Patagonia. Journal South American Earth Sciences 7 (3–4), 377–386.
  • De Wit, M., 1977. The evolution of the Scotia Arc as a Key to the reconstruction of southwestern Gondwanaland. Tectonophysics 37 (1–3), 53–81.
    De Wit, M., Armstrong, R., Bowring, S., Alexander, J., Branch, T., Decker, J., Ghosh, J., Moore, S., Lindeque, A., Stankiewicz, J., Rakatolosofo, N., 2007. Chrono-, chemical-, seismic-, electrical- and tectono-stratigraphy across parts of the Cape Fold Belt – Karoo Basin of South Africa: new foundations for correlations across the South Atlantic. In: 1 Workshop: Problems in Western Gondwana Geology (Gramado), Extended Abstracts, Porto Alegre, pp. 34–41.
  • Dimieri, L., Delpino, S., Turienzo, M., 2005. Estructura de las Sierras Australes de Buenos Aires. In: de Barrio, R., Etcheverry, O., Caballé, M.F., Llambías E. (Eds.), Geología y recursos minerales de la Provincia de Buenos Aires. 16 Congreso Geológico Argentino, Relatorio, pp. 101–118.
  • du Toit, A., 1927. A geological comparison of South America with South Africa. With a paleontological contribution by F. Cowper Reed. Carnegie Institute of Washington, Washington, Publication 381, 158 p.
  • Fígari, E., 2005. Estructura y evolución geológica de la Cuenca de Cañadón Asfalto, provincia del Chubut. Universidad de Buenos Aires, Buenos Aires, Ph.D. thesis, unpublished, 177 pp.
  • Fitzgerald, M.G., Mitchum, R.M., Uliana, M.A., Biddle, K.T., 1990. Evolution of the San Jorge Basin, Argentina. American Association of Petroleum Geologists, Bulletin 74 (6), 879–920.
  • Forsythe, R., 1982. The Late Paleozoic to Early Mesozoic evolution of Southern South America: a plate tectonic interpretation. Journal Geological Society 139, 671– 682.
  • Fortey, R., Pankhurst, R.J., Hervé, F., 1992. Devonian trilobites at Buill, Chile (42S). Revista Geológica de Chile 19 (2), 133–144.
  • Franzese, J.R., Spalletti, L.A., 2001. Late Triassic continental extension in southwestern Gondwana: tectonic segmentation and pre-break-up rifting. Journal of South American Earth Sciences 14, 257–270.
  • Frutos, J., Tobar, A., 1975. Evolution of the southwestern continental margin of South America. In: Campbell, K.S.W. (Ed.), III International Gondwana Symposium (Canberra), Gondwana Geology, Australian National University Press, pp. 565–578.
  • Galeazzi, J.S., 1996. Cuenca de Malvinas. In: Ramos V.A., Turic, M.A. (Eds.), Geología y Recursos Naturales de la Plataforma Continental Argentina. 13 Congreso Geológico Argentino y 3 Congreso de Exploración de Hidrocarburos, Buenos Aires, Relatorio 15, pp. 273–309.
  • Gallagher, J.J., 1990. Andean chronotectonics. In: Ericksen, G.E., Cañas Pinochet, M.T., Reinemud, J.A. (Eds.), Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources, Circumpacific Council for Energy and
    Mineral Resources, Houston, Earth Sciences Series, vol. 11, pp. 23–38.
  • Ghidella, M.E., Paterlini, C.M., Kovacs, L.C., Rodríguez, G.A., 1995. Magnetic anomalies on the Argentina Continental Shelf. In: Fourth International Congress of the Brazilian Geophysical Society and First Latin American
    Geophysical Conference, Río de Janeiro, Expanded Abstracts, vol. 1, pp. 269– 272.
  • Ghidella, M.E., Yañez, G., LaBrecque, H.L., 2002. Revised tectonic implications for the magnetic anomalies of the Western Weddell Sea. Tectonophysics 347 (1-3), 65– 86.
  • Ghidella, M.E., Lawver, L.A., Marenssi, S., Gahagan, L.M., 2007. Plate kinematic models for Antarctica during Gondwana break-up: a review. Revista de la Asociación Geológica Argentina 62 (4), 636–646.
  • Giacosa, R.E., Márquez, M.M., 2002. El Basamento Paleozoico de la Cordillera Patagónica. In: Haller, M.J. (Ed.), Geología y Recursos Naturales de Santa Cruz, Relatorio, vol. 1(3), pp. 45–56.
  • González, P., Poiré, D., Varela, R., 2002. Hallazgo de trazas fósiles en la Formación El Jagüelito y su relación con la edad de las metasedimentitas, Macizo Norpatagónico Oriental, provincia de Río Negro. Revista de la Asociación
    Geológica Argentina 57 (1), 35–44.
  • Von Gosen, W., Buggisch, W., 1989. Tectonic evolution of the Sierras Australes fold and thrust belt (Buenos Aires Province, Argentina): an outline. Zentralblatt für Geologie und Paläontologie Teil I(5/6), Stuttgart, pp. 947–958.
  • Halpern, M., 1968. Ages of antarctic and argentine rocks bearing on continental drift. Earth and Planetary Science Letters 5, 159–167.
  • Harrington, H.J., 1955. The Permian Eurydesma fauna of eastern Argentina. Journal of Paleontology 29 (1), 112–128.
  • Harrington, H.J., 1962. Paleogeographic development of South America. American Association of Petroleum Geologists, Bulletin 46 (10), 1773–1814.
  • Heredia, N., Alonso, J.L., Busquets, P., Colombo, F., Farías, P., Gallastegui, G., Gallastegui, J., García Sansegundo, J., Giacosa, R.E., Montes, M., Nozal F., Ramos, V., Rodríguez Fernández, L.R., 2006. El orógeno gondwánico entre los Andes Centrales (30S) y la Península Antártica (65S): Evolución y marco geotectónico. 11 Congreso Geológico Chileno (Antofagasta), Actas 1, pp. 251–254.
  • Hervé, F., Fanning, C.M., Pankhurst, R.J., 2003. Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile. Journal of South American Earth Sciences 16, 107–123.
  • Hervé, F., Fanning, C.M., Yaxley, G.M., Pankhurst, R.J., 2006. U–Pb and Lu–Hf isotopric constraints on the provenance of Permian detritus in metasedimentary rocks of Southern Chile and Livingston Island, Antarctica.
    11 Congreso geológico Chilenao (Antofagasta), Actas 1, pp. 259–260.
  • Hervé, F., Fanning, C.M., Mpodozis, C., Pankhurst, R.J., 2008. Aspects of the Phanerozoic evolution of southern Patagonia as suggested by detrital zircon age patterns. 6 South American Symposium on Isotope Geology, Abstracts, S.C. Bariloche, p. 3.
    Homovc, J.F., Constantini, L.A., 2001. Hydrocarbon exploration potential within intraplate shear-related depocenters, Deseado and San Julián basins, southern Argentina. American Association of Petroleum Geologists, Bulletin 85 (10), 1795–1816.
  • Introcaso, A., 2003. Significativa descompensación isostática en la Cuenca del Colorado (República Argentina). Revista de la Asociación Geológica Argentina 58 (3), 474–478.
  • Keidel, J., 1925. Sobre el desarrollo paleogeográfico de las grandes unidades geológicas de la Argentina. Sociedad Argentina de Estudios Geográficos GAEA, Anales 4, 251–312.
  • Kostadinoff, J., Gregori, D.A., Raniolo, A., 2005. Configuración geofísica-geológica del sector norte de la provincia de Río Negro. Asociación Geológica Argentina, revista 60 (2), 368–376.
  • Leanza, A.F., 1958. Geología Regional. In La Argentina, Suma de Geografía, Editorial Peuser 1 (3), 217–349. Buenos Aires.
  • Lesta, P.J., 1968. Estratigrafía de la Cuenca del Golfo San Jorge. 3 Jornadas Geológicas Argentinas, Buenos Aires, Actas 1, pp. 251–289.
  • Lesta, P., Ferello, R., Chebli, G., 1980. Chubut Extraandino. In: Segundo Simposio Geología Regional Argentina, Academia Nacional de Ciencias, Córdoba 2, pp. 1306–1387.
  • Linares, E., González, R.R., 1990. Catalogo de edades radimétricas de la República Argentina 1957-1987. Asociación Geológica Argentina, Publicaciones Especiales Serie B, Didáctica y Complementaria, vol. 19, 628 pp.
  • Lizuaín, A., 1981. Características y edad del plutonismo en los alrededores de Lago Puelo, Prov. del Chubut. 8 Congreso Geológico Argentino, Buenos Aires, Actas 3, pp. 607–616.
  • Llambías, E.J., Rapela, C.W., 1985. Geología de los complejos eruptivos de La Esperanza, provincia de Río Negro. Revista de la Asociación Geológica Argentina 39 (3–4), 220–243.
  • Llambías, E.J., Caminos, R. Rapela, C.W., 1984. Las plutonitas y vulcanitas del ciclo eruptivo Gondwánico. In: Ramos,V.A. (Ed.), Geología y recursos naturales de la provincia de Río Negro, 9 Congreso Geológico Argentino (Bariloche), Relatorio, Buenos Aires, p. 85–118.
  • Llambías, E.J., Varela, R., Basei, M., Sato, A.M., 2002. Deformación dúctil y metamorfismo neopaleozoico en Yaminué y su relación con la fase orogénica San Rafael. 15 Congreso Geológico Argentino, Actas 3, pp. 123–128.
  • López de Lucchi, M.G., Cerredo, M.E., 2008. Geochemistry of the Mamil Choique granitoids at Rio Chico, Río Negro, Argentina: Late Paleozoic crustal melting in the North Patagonian Massif. Journal of South American Earth Sciences 25, 526–546.
  • López de Luchi, M.G., Spikermann, J.P., Strelin, J.A., Morelli, J., 1992. Geología y petrología de los plutones de la Tapera de Burgos, Arroyo El Rápido y Cerro Caquel, Departamento Languineo, Provincia del Chubut. Revista de la
    Asociación Geológica Argentina 47 (1), 87–98.
  • López Gamundi, O., 2006. Permian plate margin volcanism and tuffs in adjacent basins of west Gondwana: age constraints and common characteristics. Journal of South American Earth Sciences 22, 227–238.
  • López Gamundi, O.R., Breitkreuz, C., 1997. Carboniferous to Triassic evolution of the Panthalassan margin in southern South America. In: López Dickins, J.M. (Ed.), Late Paleozoic and Early Mesozoic Events and Their Global Correlation. Cambridge University Press, pp. 8–19.
  • López Gamundi, O., Limarino, C.O., 1985. Facies de abanico submarino en el grupo Tepuel (Paleozoico superior), provincia del Chubut. Revista de la Asociación Geológica Argentina 39 (3–4), 251–261.
  • López Gamundi, O.R., Rossello, E., 1992. La cuenca intraserrana de Claromecó, Argentina: un ejemplo de cuenca de antepaís hercínica. 8 Congreso Latinoamericano de Geología, Salamanca, vol. 4, pp. 55–59.
  • López Gamundi, O.R., Conaghan, P., Rossello, E.A., Cobbold, P.R., 1995. The Tunas Formation (Permian) in the Sierras Australes Foldbelt, East-Central Argentina: evidence of syntectonic sedimentation in a Varisican foreland basin. Journal of South American Earth Sciences 8 (2), 129–142.
  • Loske, W., Márquez, M., Giacosa, R., Pezzuchi, H., Fernández, M.I., 1999. U/Pb geochronology of pre-Permian basement rocks in the Macizo del Deseado, Santa Cruz province, Argentine Patagonia. 15 Congreso Geológico Argentino (Salta), Actas 1, p. 102.
  • Manceñido, M., Damborenea, S., 1984. Megafaunas de invertebrados paleozoicos y mesozoicos. In: Ramos,V.A. (Ed.), Geología y recursos naturales de la provincia de Río Negro. 9 Congreso Geológico Argentino, Relatorio, Buenos Aires, vol. 413–463.
  • Martin, A.K., Hartnady, C.H.J.H., Goodland, S.W., 1981. A revised fit of South America and South Central Africa. Earth and Planetary and Science Letters 54, 293–305.
  • Martínez, C., 1980. Geologie des Andes Boliviennes. Estructure et evolution de la chaine hercynienne et de la chaine andine dans le nord de la Cordillere des Andes de Bolivie. Travaux et Documents de ORSTOM (Office Recherche Scientifique Technique Outre-Mer) 119, 1–352. París.
  • Massabie, A., Rossello, E., 1984. La discordancia pre-Sauce Grande y su entorno estratigráfico. 9 Congreso Geológico Argentino, Actas 1, pp. 337–352.
  • Max, M.D., Ghidella, M., Kovacs, L., Paterlini, M., Valladares, J.A., 1999. Geology of the Argentine continental shelf and margin from aeromagnetic survey. Marine and Petroleum Geology 16 (1), 41–64.
  • Milani, E.J., 2007. The Paraná Basin: a multi-cycle sedimentary and magmatic intracratonic province of W Gondwana. I Workshop: Problems in Western Gondwana Geology (Gramado), Extended Abstracts, Porto Alegre, pp. 99–107.
  • Milani, E.J., De Wit, M.J., 2008. Correlations between the classic Parana’ and Cape- Karoo sequences of South America and southern Africa and their basin infills flanking the Gondwanides: du Toit revisited. In: Pankhurst, R.J., Trouw, R.A.J., Brito Neves, B.B., De Wit, M.J. (Eds.), West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. Geological Society, Special Publications, London, vol. 294, pp. 319–342.
  • Monger, J.H.W., Price, R.A., Tempelman-Kluit, D.J., 1982. Tectonic accretion and the origin of two major metamorphic and plutonic welts in the Canadian Cordillera. Geology 10, 70–75.
  • Moreira, P., Fernández, R., Hervé, F., Fanning, C.M., 2007. U–Pb SHRIMP ages from detrital zircons of the La Modesta Formation, Deseado Massif, Argentina. Universidad de Chile, Geosur 207, An International Congress on the Geology and Geophysics of the Southern Hemisphere, Abstract, Santiago, vol. 104.
  • Moreno, F.P., 1882. Patagonia, resto de un antiguo continente hoy sumergido. Anales de la Sociedad Científica Argentina 14, 97–131. Buenos Aires.
  • Mosquera, A., 2008. Mecánica de deformación en la cuenca neuquina, Neuquén. Universidad de Buenos Aires, Ph.D. Thesis, Unpublished, Buenos Aires, 205 pp.
  • Mosquera, A., Ramos, V.A., 2006. Intraplate deformation in the Neuquén Basin. In: Kay, S.M., Ramos, V.A. (Eds.), Evolution of an Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuquén Basin (35–39S latitude). Geological Society of America, Special Paper 407, pp. 97–124.
  • Page, S., 1984. Los gabros bandeados de la Sierra de Tepuel. Cuerpos del sector Suroeste, provincia de Chubut. 9 Congreso Geológico Argentino (Bariloche), Buenos Aires, Actas 2, pp. 584–599.
  • Page, R.F.N., Limarino, C.O., López Gamundi, O., Page, S., 1984. Estratigrafía del Grupo Tepuel en su perfil tipo y en la región El Molle, provincia de Chubut. 9 Congreso Geológico Argentino (Bariloche), Buenos Aires, Actas 1, pp. 619–632.
  • Pankhurst, R., Caminos, R., Rapela, C.W., 1993. Problemas geocronológicos de los granitoides Gondwánicos de Nahuel Niyeu, Macizo Norpatagónico. 12 Congreso Geológico Argentino y 2 Congreso de Exploración de Hidrocarburos (Mendoza), Buenos Aires, Actas 4, pp. 99–104.
  • Pankhurst, R.J., Rapela, C.W., Fanning, C.M., 2001. The Mina Gonzalito Gneiss: Early Ordovician Metamorphism in Northern Patagonia. 3 South American Symposium on Isotope Geology, Actas Electrónicas Sesion, , Pucón, vol. 6(4), pp. 1–4.
  • Pankhurst, R., Rapela, C., Loske, W.P., Márquez, C.M., Fanning, M.Y., 2003. Chronological study of pre-Permian basement rocks of southern Patagonia. Journal of South American Earth Sciences 16 (1), 27–44.
  • Pankhurst, R.J., Rapela, C.W., Fanning, C.M., Márquez, M., 2006. Gondwanide continental collision and the origin of Patagonia. Earth Science Reviews 76, 235–257.
  • Pezzuchi, H.D., 1978. Estudio geológico de la zona de la Estancia Dos Hermanos, Estancia 25 de Mayo y adyacencias, departamento Deseado, provincia de Santa Cruz. Universidad Nacional de La Plata, Ph.D. Thesis, unpublished, La Plata.
  • Ploszkiewicz, J.V., Orchuela, I.A., Vaillard, J.C., Viñes, R.F., 1984. Compresión y desplazamiento lateral en la zona de Falla Huincul: estructuras asociadas, provincia del Neuquén. 9E Congreso Geológico Argentino, Actas 2, 163–169. Buenos Aires.
  • Poma, S., 1986. Petrología de las rocas básicas pre-cretácicas de la sierra de Tepuel, provincia de Chubut. Ph.D. Dissertation, Universidad de Buenos Aires, Buenos Aires, unpublished, 258 pp.
  • Ramos, V.A., 1975. Geología del sector oriental del macizo Nordpatagónico entre Aguada Capitán y la Mina Gonzalito, provincia de Río Negro. Revista de la Asociación Geológica Argentina 30 (3), 274–285. Buenos Aires.
  • Ramos, V.A., 1983. Evolución tectónica y metalogénesis de la Cordillera Patagónica. 2 Congreso Nacional Geología Económica (San Juan), Actas 1, pp. 108–124.
  • Ramos, V.A., 1984. Patagonia: ¢ Un continente paleozoico a la deriva? 9 Congreso Geológico Argentino (Bariloche), Actas 2, pp. 311–325.
  • Ramos, V.A., 1986. Tectonostratigraphy, as applied to analysis of South African Phanerozoic Basins by H. de la R. Winter, discussion. Transactions Geological Society South Africa, vol. 87(2), pp. 169–179.
  • Ramos, V.A., 1988. Tectonics of the Late Proterozoic–Early Paleozoic: a collisional history of Southern South America. Episodes 11 (3), 168–174.
  • Ramos, V.A., 1996. Evolución tectónica de la Plataforma Continental. In: Ramos, V.A., Turic, M.A. (Eds.), Geología y Recursos Naturales de la Plataforma Continental Argentina. Asociación Geológica Argentina e Instituto Argentino del Petróleo, Buenos Aires, pp. 359–368.
  • Ramos, V.A., 1999. Plate tectonic setting of the Andean Cordillera. Episodes 22 (3), 183–190.
  • Ramos, V.A., 2004a. Tectonics of the southernmost Andes: a comparison between the Patagonian and the Fuegian Cordilleras. Bolletino di Geofisica Teorica ed Applicata 45, 1–10 (2, supplement, Trieste).
  • Ramos, V.A., 2004b. La Plataforma Patagónica y sus relaciones con la Plataforma Brasilera. In: Mantesso-Neto, V., Bartorelli, A., Ré Carneiro, C.D., Brito Neves, B.B. (Eds.) Geologia do Continente Sul-Americano, Sao Paulo, vol. 22, pp. 371–381.
  • Ramos, V.A., 2008. The basement of the Central Andes: the Arequipa and related terranes. Annual Review on Earth and Planetary Sciences 36, 289–324.
  • Ramos, V.A., Kostadinoff, J., 2005. La cuenca de Claromecó. In: de Barrio, R.E., Etcheverry, R.O., Caballé, M.F., Llambías, E. (Eds.), Geología y recursos minerales de la Provincia de Buenos Aires. 16 Congreso Geológico Argentino, Relatorio, pp. 473–480.
  • Ramos, V.A., Palma, M.A., 1996. Tectónica del Pérmico de Argentina. In Archangelsky, S. (Ed.), El sistema Pérmico en la República Argentina y en la República Oriental del Uruguay. Academia Nacional de Ciencias, Córdoba, pp.
    239–254.
  • Ramos, V.A., Riccardi, A.C., Rolleri, E.O., 2004. Límites Naturales de la Patagonia. Revista de la Asociación Geológica Argentina 59 (4), 785–786.
  • Rapalini, A.E., 2005. The accretionary history of southern South America from the latest Proterozoic to the Late Paleozoic: some paleomagnetic constraints. In: Vaughan, A.P.M., Leat, P.T., Pankhurst, R.J. (Eds.), Terrane Processes at the Margins of Gondwana. Geological Society, London, Special Publications, vol. 246, pp. 305–328.
  • Rapalini, A.E., López de Luchi, M., Croce, F., Lince Klinger, F., Tomezzoli, R., Gímenez, M., 2008. Estudio geofísico del complejo plutónico Navarrte: implicancias para la evolución tectónica de Patagonia en el Paleozoico Tardío. 5 Simposio Argentino del Paleozoico Superior, Resúmenes, Buenos Aires, vol. 34, p. 34.
  • Rapela, C., Caminos, R., 1987. Geochemical characteristics of the Upper Paleozoic magmatism in the eastern sector of Northpatagonian massif. Revista Brasileira de Geociencias 17 (4), 535–543. Sao Paulo.
  • Rapela, C.W., Kostadinoff, J., 2005. El basamento de Sierra de la Ventana: historia tectonomagmática. In: de Barrio, R.E., Etcheverry, R.O., Caballé, M.F., Llambías, E. (Eds.), Geología y recursos minerales de la Provincia de Buenos Aires. 16 Congreso Geológico Argentino, Relatorio, pp. 69–84.
  • Rapela, C.W., Llambías, E.J., 1985. Evolución magmática y relaciones regionales de los Complejos Eruptivos de La Esperanza. Provincia de Río Negro. Revista de la Asociación Geológica Argentina 40 (1–2), 4–25.
  • Rapela, C.W., Pankhurst, R.J., Harrison, S.M., 1989. Gondwana Plutonism of Northern Patagonia. 28th International Geological Congreso, Washington DC, Abstracts, vol. 2, p. 675.
  • Rapela, C.W., Pankhurst, R.J., Fanning, C.M., Grecco, L.E., 2003. Basement evolution of the Sierra de la Ventana Fold Belt: new evidence for Cambrian continental rifting along the southern margin of Gondwana. Journal of the Geological Society (London) 160, 613–628.
  • Sandwell, D.T., Smith, W.H.F., 1997. Marine gravity anomaly fromGeosat and 262 ERS- 1 satellite altimetry. Journal of Geophysical Research 102 (B5). 263, 10039–10054.
  • Santos, R.V., Souza, P.A., Souza de Alvarenga, C.J., Dantas, E.L., Pimentel, M.M., Gouveia de Oliveira, G., Medeiros de Araújo, L., 2006. Shrimp U–Pb zircon dating and palynology of bentonitic layers from the Permian Iratí Formation, Paraná Basin, Brazil. Gondwana Research 9 (4), 456–463.
  • Silvestro, J., Zubiri, M., 2008. Convergencia oblicua: Modelo estructural alternativo para la dorsal neuquina (39S) Neuquén. Revista de la Asociación Geológica Argentina 63 (1), 49–64.
  • Söllner, F., Miller, H., Hervé, F., 2000. An early Cambrian granodiorite age from the pre-Andean basement of Tierra del Fuego (Chile): the missing link between South America and Antactica? Journal of South American Earth Sciences 13, 163–177.
  • Stern, C.H.R., Frey, F.A., Zartman, R.E., Peng, Z., Kyser, T.K., 1990. Trace element and Sr, Nd, Pb and O isotopic composition of Pliocene and Quaternary alkalic basalts of the Patagonian Plateau lavas of southernmost South America. Contributions to Mineralogy and Petrology 104, 94–308.
  • Sylwan, C.A., 2001. Geology of the Golfo San Jorge Basin, Argentina. Journal of Iberian Geology 27, 123–157.
  • Tankard, A.J., Jackson, M.P.A., Eriksson, K.A., Hobday, D.K., Hunter, D.R., Minter, W.E.L., 1982. Crustal Evolution of Southern Africa: 3.8 Billion years of Earth History. Springer-Verlag, New York. pp. 480.
  • Tickyj, H., Dimieri, L.V., Llambías, E.J., Sato, A.M., 1997. Cerro Los Viejos (38 28’S – 64 26’O): Cizallamiento dúctil en el sudeste de La Pampa. Revista de la Asociación Geológica Argentina 52 (3), 311–321.
  • Tohver, E., Cawood, P.A., Rossello, E.A., Riccomini, C., 2007. Demise of the Gondwana ice sheet in SW Gondwana: time constraints from U–Pb zircon ages. Universidad de Chile, Geosur 207, An International Congress on the Geology and Geophysics of the Southern Hemisphere, Abstract, Santiago, vol. 163.
  • Tomezzoli, R.N., Cristallini, E.O., 1998. Nuevas evidencias sobre la importancia del fallamiento en la estructura de las Sierras Australes de la Provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 53 (1), 117–129.
  • Tomezzoli, R.N., Vilas, J.F., 1999. Paleomagnetic constraints on the age of deformation of the Sierras Australes thrust and fold belt, Argentina. Geophysical Journal Interior 138, 857–870.
  • Toubes, R.O., Spikermann, P.J., 1974. Algunas edades K/Ar y Rb/Sr de plutonitas de la Cordillera Patagónica entre los paralelos 40 y 44 de latitud sur. Revista de la Asociación Geológica Argentina 2 (4), 382–396.
  • Uliana, M.A., Biddle, K.T., 1987. Permian to Late Cenozoic evolution of Northern Patagonia: main tectonic events, magmatic activity and depositional trends. In: McKenzie, G.D. (Ed.), Gondwana Six: Structure, Tectonics and Geophysics. American Geophysical Union, Geophysical Monograph, Washington, vol. 40, pp. 271–286.
  • Valencio, D.A., Vilas, J.F.A., 1985. Evidence of a microplate in the Southern Andes. Journal of Geodynamics 2 (2-3), 183–192.
  • Varela, R., Dalla Salda, L., Cingolani, C., 1986. Estructuras de la Sierra Colorada, Chasicó y Cortapié, Sierras Australes, provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 40 (3–4), 254–261. 1985.
  • Varela, R., Cingolani, C., Sato, A., Dalla Salda, L., Brito Neves, B., Basei, M., Siga Jr., O., Texeira, W., 1997. Proterozoic and Paleozoic evolution of Atlantic area of North- Patagonian Massif, Argentina. 1 South American Symposium on Isotope Geology, Actas, San Pablo, pp. 326–329.
  • Varela, R., Basei, M., Sato, A., Siga Jr., O., Cingolani, C., Sato, K., 1998a. Edades isotópicas Rb/Sr y U/Pb en rocas de Mina Gonzalito y Arroyo Salado. Macizo Norpatagónico Atlántico, Río Negro, Argentina. 10 Congreso Latinoamericano de Geología y 6 Congreso Nacional de Geología Económica, Buenos Aires, Actas 1, pp. 71–76.
  • Varela, R., Basei, M., Sato, A.M., Llambías, E.J., Siga Jr., O., 1998b. Edades isotópicas del Complejo Yaminué, Macizo Norpatagónico. 2 Simposio Argentino Paleozoico Superior, Resúmenes, Trelew, vol. 31, p. 33.
  • Varela, R., Basei, M.A.S., Brito Neves, B.B., Sato, A.M., Teixeira, W., Cingolani, C.A., Siga Jr., O., 1999. Isotopic study of igneous and metamorphic rocks of Comallo- Paso Flores, Río Negro, Argentina. 2o Simposio Sudamericano de Geología Isotópica (Carlos Paz). Servicio Geológico Minero Argentino, Anales, Buenos Aires, vol. 34, pp. 148–151.
  • Varela, R., Basei, M., Cingolani, C.A., Siga Jr., O., Passarelli, C.R., 2005. El basamento cristalino de los Andes norpatagónicos en Argentina: geocronología e interpretación tectónica. Revista geológica de Chile 32 (2), 167–187.
  • Varela, R., Sato, K., González, P.D., Sato, A., Basei, M., 2007. Descifrando la edad y significado del plutonismo Paleozoico en Sierra Grande, Noreste Patagónico, Argentina. 5o Congreso Uruguayo de Geología, Resúmenes, vol. 132.
  • Von Gosen, W., 2002. Polyphase structural evolution in the northeastern segment of the North Patagonian Massif (southern Argentina). Journal of South America Earth Sciences 15 (5), 591–623.
  • Von Gosen, W., 2003. Thrust tectonics in the North Patagonian Massif (Argentina): implication for a Patagonian plate. Tectonics 22 (1), 1005. doi:10.1029/ 2001ITC901039.
  • Weber, E.I., 1983. Descripción geológica de la Hoja 40j, Cerro El Fuerte, Prov. de Río Negro. Boletín del Servicio Geológico Nacional 196, 1–69. Buenos Aires.
  • Windhausen, A., 1931. Geología Argentina. Geología Histórica y Regional del Territorio Argentino. J. Peuser 2, 1–645. Buenos Aires.
  • volver arriba

BIBLIOGRAFIA SOBRE LA DEFORMACION GONDWANICA

 

Buggisch, W., 1987. Stratigraphy and very low grade metamorphism of the Sierras Australes de la Provincia de Buenos Aires (Argentina) and implications in Gondwana correlation. Zentralblat fur Geologie und Palaontologie., I: 819-837.

Caminos, R., Chernicoff, C. J., Fauqué, L., Franchi, M. and Espejo, P., 1999. Geología y Recursos Minerales de la Hoja 4166-1. Valcheta. (1:250.000), 132 pp. Servicio Geológico Minero Argentino. Viedma.

Chernicoff, C. J. y Caminos, R. 1996. Estructura y relaciones estratigráficas de la Formación Nahuel Niyeu, Macizo Nordpatagónico oriental, Provincia de Río Negro. Revista de la Asociación Geológica Argentina, 51 (3): 201-212.

Chernicoff, C. J. and Zappettini, E. O., 2004. Geophysical Evidence for Terrane Boundaries in South Central Argentina. Gondwana Research, 7 (4): 1105-1116.

Coira, B., Nullo, F., Proserpio, C. and Ramos, V., 1975. Tectónica del basamento de la región occidental del Macizo Nordpatagónico (Prov. de Río Negro y Chubut). Revista de la Asociación Geológica Argentina, 30 (4): 361-384.

Dalla Salda, L. H., Cingolani, C. and Varela, R., 1990. The origin of Patagonia. Comunicaciones, 41: 55-64. Departamento de Geología, Universidad de Chile, Santiago.

Dalla Salda, L. H., Cingolani, C. and Varela, R., 1991. El basamento pre-andino ígneo-metamórfico de San Martín de los Andes, Neuquén. Revista de la Asociación Geológica Argentina, 46, 223-234.

Dalla Salda, L. H., Cingolani, C. and Varela, R., 1992. Early Palaeozoic orogenic belt of the Andes in South America: Result of Laurentia-Gondwana collision. Geology, 20: 616-620

Dalla Salda, L.H., Varela, R., Cingolani, C., and Aragón, E., 1994, The Rio Chico Paleozoic Crystalline Complex and the evolution of Northern Patagonia: Journal South American Earth Sciences. 7: 377-386.

Dalmayrac, B., Laubacher, G., Marocco, R., Martinez, C. and Tomasi, P., 1980. La chaine hercynienne d` Amerique du Sud. Structure et evolution d`un orogene intracratonique. Sonderdruck a. d. Geol. Rundschau. 69 (1): 1-21.

Dalziel, I. W. D., Garrett, S. W., Grunow, A. M., Pankhurst, R. J., Storey, B. C., and Vennum, W. R., 1987. The Ellsworth-Whitmore Crustal Block: Its Role in the Tectonic Evolution of West Antarctica, In: Gondwana Six: Structure, Tectonics, and Geophysics. (Ed: Gary D. McKenzie). American Geophysical Union, Geophysical Monograph Number 40: 173-182.  

Davidson, J., Mpodozis, C., Godoy, E., Hervé, F., Pankhurst, R. and Brook, M., 1987. Late Paleozoic accretionary complexes on the Gondwana margin of southern Chile: Evidence from the Chonos Archipielago. In: Gondwana Six: Structure, Tectonics, and Geophysics. Geophysical Monography Series, 40: 221-227. (Ed.: McKenzie, G. D.) American Geophysical Union, Washington.

Du Toit, A. L., 1937. Our wandering continents. 366 pp. Oliver and Boyd, Edinburgh.

Ford, A. B., 1972. Weddell Orogeny-Latest Permian to Early Mesozoic deformation at the Weddell Sea margin of the Transantarctic Mountains. International Union of Geological Science, Series B 1: 419-425.

Giacosa, R. E., 1996. Zonas de cizalla frágil-dúctil en el sector oriental del Macizo Norpatagónico. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos. Actas II: 395.  

Giacosa, R. E., 1997. Geología y petrología de las rocas pre-cretácicas de la región de Sierra Pailemán, Provincia de Río Negro. Revista de la Asociación Geológica Argentina, 52 (1): 65-80.

Giacosa, R. E., 2001. Zonas de cizalla frágil-dúctil neopaleozoicas en el nordeste de la Patagonia. Revista de la Asociación Geológica Argentina, 56 (2): 131-140.

Giacosa, R. E. and Paredes, J. M., 2001. Estructura de las metamorfitas del Paleozoico temprano en el Arroyo. Salado. Macizo Nordpatagónico, Río Negro. Revista de la Asociación Geológica Argentina, 56(2): 141-149.  

González, P. D., Poiré, D. and Varela, R., 2002. Hallazgo de trazas fósiles en la Formación El Jagüelito y su relación con la edad de las metasedimentitas, Macizo Nordpatagónico Oriental, Provincia de Río Negro. Revista de la Asociación Geológica Argentina, 57 (1): 35-44.

Gregori, D. A., Kostadinoff, J., Strazzere, L. and Raniolo, A. 2008. Tectonic significance and consequences of the Gondwanide orogeny in northern Patagonia, Argentina Gondwana Research, Volume 14, Issue 3, October 2008, Pages 429-450.

Holzförster, F., Stollhofen, H., Lorenz, V and Stanistreet, I. G., 1998. The Waterberg Basin in Central Namibia: transfer fault activity during early South Atlantic rift evolution. Journal of African Earth Sciences 27, (1A): 116-117.

Hälbich, I. W., Fitch, F. J. & Miller, J. A. 1983. Dating the Cape orogeny. In Geodynamics of the Cape Fold Belt. (Ed: Söhnge, A. P. G. and Hälbich, I. W). Special Publication Geological Society South Africa 12: 149-164.

Keidel, J., 1916. La geología de las sierras de la Provincia de Buenos Aires y sus relaciones con las montañas de Cabo y los Andes. Anales Dirección Nacional de Geología y Minería, IX (3): 5-77. Buenos Aires.

Keidel, J., 1925. Sobre el desarrollo paleogeográfico de las grandes unidades geológicas de la Argentina. Soc. Arg. Est. Geogr. GAEA. Anales 4: 251-312.

Kostadinoff, J. and Labudía, C. H., 1991. Algunas características del basamento en la desembocadura del Río Negro a partir de datos gravimagnetométricos. Revista de la Asociación Geológica Argentina. 46 (3-4): 173-180.

Kostadinoff J., Llambías, E., Raniolo, L. A. and Alvarez, G., 2001. Geología y Geofísica del sector oriental de la provincia de La Pampa. Revista de la Asociación Geológica Argentina. 56 (4): 481-493.

Kostadinoff, J., Gregori, D. A. and Raniolo, A., 2005. Configuración geofísica-geológica del sector Norte de la provincia de Río Negro. Revista de la Asociación Geológica Argentina. XXX (3-4).

Kostadinoff, J. and Llambías, E., 2002. Cuencas sedimentarias en el subsuelo de la provincia de La Pampa. V Congreso de Exploración y Explotación de Hidrocarburos. Editado en CD. Mar del Plata

Labudía, C. H. and Bjerg, E. A., 1995. Geología del sector oriental de la Hoja Bajo Hondo (39e), provincia de Río Negro. Revista de la Asociación Geológica Argentina, 49 (3-4): 284-296.

Linares, E., Llambías, E. J. and Latorre, C. O., 1980. Geología de la Provincia de La Pampa, República Argentina y geocronología de sus rocas metamórficas y eruptivas. Revista de la Asociación Geológica Argentina, 35: 87-146.

Llambías, E. J., and Leveratto, M. A., 1975. El plateau riolítico de la provincia de La Pampa, República Argentina. II Congreso Iberoamericano de Geología Económica, Buenos Aires, Actas 1, 99–114.

Llambías, E. J., Melchor, R. N., Tickyj, H. and Sato, A. M., 1996. Geología del Bloque del Chadileuvú. 13º Congreso Geológico Argentino, Actas V: 417-425. Buenos Aires.

Llambías, E. J., Sonia Quenardelle, S. and Montenegro, T. 2003. The Choiyoi Group from central Argentina: a subalkaline transitional to alkaline association in the craton adjacent to the active margin of the Gondwana continent Journal of South American Earth Sciences, 16: 243-255.

Llambías, E. J., Varela, R., Basei, M. and Sato, A. M., 2002. Deformación y metamorfismo neopaleozoico en Yaminué, Macizo Nordpatagónico (40º 50´S, 67º 40´W): su relación con la fase orogénica San Rafael y el arco de los Gondwánides. 15º Congreso Geológico Argentino, Actas en CD. El Calafate.

López-Gamundi, O. R., Conaghan, P. J., Rosello, E. A. and Cobbold, P. R., 1994. The Tunas Formation in the Sierras Australes Fold Belt. Journal of South American Earth Sciences, 8: 129-142.

Melchor, R. N., 1999. Redefinición estratigráfica de la Formación Carapacha (Pérmico), provincia de La Pampa. Revista de la Asociación Geológica Argentina, 54(2): 99-108.

Nullo, F., 1979. Descripción geológica de la Hoja 39c Paso Flores. Provincia de Río Negro. Servicio Geológico Nacional. Boletín 167: 70 pp.  

Nullo, F., 1991. Cuencas extensionales del mesozoico inferior en el extremo sur de Sudamérica. Un modelo transpresional. Revista de la Asociación Geológica Argentina, 46 (1-2): 115-126.

Nuñez, E. and Cucchi, R. J., 1990. Estratigrafía del sector noroccidental del Macizo Nordpatagónico en los alrededores de Mencué, provincia de Río Negro. República Argentina. 11 Congreso Geológico Argentino. Actas II: 125-128.

Orchuela I. A., Ploszkiewicz, V. and Viñes, R., 1981. Reinterpretación estructural de la denominada “Dorsal Neuquina”. 8º Congreso Geológico Argentino. Actas 3: 281-293.

Orchuela I. A. and Ploszkiewicz, V., 1984. La Cuenca Neuquina. In: Geología y recursos naturales de la provincia de Río Negro. Relatorio (Editor: Ramos, V.). 9º Congreso Geológico Argentino. I (7): 163-188. S. C. de Bariloche.

Pankhurst, R.J., Rapela, C.W. and Fanning, C.M., 2001. The Mina Gonzalito gneiss: Early Ordovician metamorphism in northern Patagonia. III South American Symposium on Isotope Geology, Actas (CD), Pucón, Chile.

Pankhurst, R.J., Rapela, C.W. and Fanning, C.M. and Márquez, M., 2006. Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews xx (2006) xxx–xxx (En Prensa)

Ploszkiewicz, J. V., Orchuela I. A., Vaillard, J. C. and Viñes, R. F., 1984. Compresión y desplazamiento lateral en la zona de la falla Huincul, estructuras asociadas, provincia del Neuquen. 9 Congreso geológico Argentino. Actas II: 163-169. S. C. de Bariloche.

Rapela, C.W., Pankhurst, R.J., and Harrison, S.M., 1992, Triassic "Gondwana" granites of the Gastre district, North Patagonian Massif:  Trans. Roy. Soc. Edinburgh, v. 83, p. 291-304.

Ramos, V. A., 1975. Geología del sector oriental del Macizo Nordpatagónico entre Aguada Capitán y la Mina Gonzalito, prov. de Río Negro. Revista de la Asociación Geológica Argentina, 30 (3): 274-285.

Ramos, V. A., 1978. Estructura. In: Geología y recursos naturales del Neuquen. 7 Congreso geológico Argentino. Relatorio. 99-118. Buenos Aires.

Ramos, V. and Cortes, J. M., 1984. Estructura e interpretación tectónica. In: Geología y recursos naturales de la provincia de Río Negro. Relatorio (Ed: Ramos, V.). 9º Congreso Geológico Argentino I (7): 317 – 346. S. C. de Bariloche.

Ramos, V., 1984. Patagonia: ¿Un continente Paleozoico a la deriva?. IX Congreso Geológico Argentino. Actas III: 311-325

Ramos, V. A., 1986. Tectonostratigraphy, as applied to analysis of South African basins by H. De La R. Winter-Discussion. Transactions Geological Society South Africa, 89: 427-429.

Ramos, V. A., 1988. Late Proterozoic-Early Paleozoic of South America-A collisional history. Episodes, 11 (3): 168-174.

Ramos, V. A., 2008. Patagonia: A Paleozoic continent adrift?. Journal of South American Earth Sciences. En prensa

Rapalini, A. E. and Vizán, H., 1993. Evidence of intrapangaea movements in West Gondwana. Comptes Rendus XII International Congress on Carboniferous-Permian. I: 405-434. Buenos Aires.

Rapalini, A. E., 1998. Syntectonic magnetization of the mid-Paleozoic Sierra Grande Formation: Further constraints of the tectonic evolution of Patagonia.

Rapela, C. W. and Pankhurts, R. J. 2002. Eventos tecto-magmáticos del Paleozoico Inferior en el margen Proto-Atlántico del sur de Sudamérica. 15º Congreso Geológico Argentino. Actas en CD. El Calafate.

Rossello, E.A., Massabie, A. C., Lòpez Gamundì, O.R., Cobbold, P.R. and Gapais, D., 1997. Late Paleozoic trnaspression in Buenos Aires and northeast Patagonia ranges, Argentina, Journ. South American Earth Sci, 10: 389-402.

Sato, A. M., Tickyj, H. and Llambías, E. J., 1996. Geología de los granitoides aflorantes en el sur de la provincia de La Pampa, Argentina. 13 Congreso Geológico Argentino y 3 Congreso de Exploración de Hidrocarburos. Actas 5: 429-439.

Sellés Martínez, J., 1989. The structure of the Sierras Australes (Buenos Aires province, Argentina): An example of holding in a transpressive environment, Journal South American Earth Sciences. 2: 317-329.

Söhnge, A. P. G. and Hälbich, I. W. (Eds.), 1983. Geodynamics of the Cape Fold Belt. Geological Society of South Africa. Special Publication 12: 1-184.  

Tickyj, H. and Llambías, E., 1994. El gneiss milonítico del Cerro de Los Viejos (38° 28´S-64° 26´O), provincia de La Pampa, Argentina. ¿Evidencia de un corrimiento en el Carbónico inferior? 7 Congreso Geológico Chileno (Universidad de Concepción), Actas II: 1239-1243

Tickyj, H., Dimieri, L. V, Llambías, E. J. and Sato, A. M. 1997. Cerro de Los Viejos (38º 28´S-64º 26´O): cizallamiento dúctil en el sudeste de La Pampa. Asociación Geológica Argentina, Revista, 52(3): 311-321.

Tickyj, H., 1999, Estructura y petrología del basamento cristalino de la región centro sur de la provincia de La Pampa, Argentina. Tesis doctoral, 228 pp. Universidad Nacional de La Plata.

Tickyj, H., Llambías, E. J. and Sato, A. M., 1999a. El basamento cristalino de la región sur-oriental de la provincia de La Pampa: Extensión austral del Orógeno Famatiniano de Sierras Pampeanas. 14° Congreso Geológico Argentino, Actas I: 160-163.

Tickyj, H., Basei, M. A. S., Sato, A. M. and Llambías, E. J., 1999b. U-Pb and K-Ar ages of Pichi Mahuida Group, crystalline basement of SE La Pampa province, Argentina. II South American Symposium on Isotope Geology, Extended Abstract. 139-142, Carlos Paz, Argentina.

Tickyj H,. Llambías E. J and Melchor, R. N. 2002. Ordovician Rocks from La Pampa Province, Argentina.. In: Aspects of the Ordovician System in Argentina. (Ed: Aceñolaza, F. G.). Serie Correlación Geológica 16:. 257-266pp. Instituto Superior de Correlación Geológica. Tucumán.

Tomezzoli, R. N. and Vilas, J. F., 1996. Paleomagnetismo del Grupo Pillahuincó en Sierra de la Ventana (estancias Las Julianas y San Carlos). XIII Congreso Geológico Argentino. III Congreso de Exploración de Hidrocarburos. Buenos Aires. Actas II: 481-488.

Turner, J. C. M. and Baldis, B. A. J., 1978. La estructura transcontinental del límite septentrional de la Patagonia. 7º Congreso Geológico Argentino, Neuquen. Actas, (2): 225 – 238. Buenos Aires.

Uliana, M.A. and Biddle, K.T., 1987. Permian to late Cenozoic evolution of northern Patagonia: Main tectonic events, magmatic activity, and depositional trends, In: Gondwana Six: Structure, Tectonics, and Geophysics. (Ed.: McKenzie, G. D.). American Geophysical Union Geophysical Monograph 40: 271-286. Washington.

Uliana, M. A., Biddle, K. T. and Cerdán, J., 1989. Mesozoic extension and the formation of Argentine sedimentary basins. In: Extensional tectonics and stratigraphy of the North Atlantic margins. (Ed. Tankard, A. J. and Balkwill, H. R.). American Association of Petroleum Geologist, Memoir 46: 599-614.

Varela, R., Basei, M. A. S., Sato, A. M., Sita Jr., O., Cingolani, C. A. and Sato, K., 1998. Edades isotópicas RB/Sr y U/Pb en rocas de Mina Gonzalito y Arroyo Salado. Macizo Nordpatagónico Atlántico, Río Negro, Argentina. X Congreso Latinoamericano de Geología y VI Congreso Nacional de Geología Económica, I: 71-76. Buenos Aires.

Vergani, G. D.; Tankard, A. J.; Belotti, H. J.; Welsink, H. J., 1995. Tectonic evolution and paleogeography of the Neuquén basin, Argentina. In Petroleoum basins of South America (Eds: Tankard, A. J.; Suárez, S.; Welsink, H. J.). American Association of Petroleum Geologists, Memoir 62: 383-402.

Vizán, H. and Rapalini, A. E., 1991. Evidencias de movimientos intrapangeanos durante el Paleozoico Tardio-Mesozoico Temprano. VI Congreso Geológico Chileno. Actas 179-183.

von Gosen, W, Buggisch, W. and Dimieri, L., 1990. Structural and metamorphic evolution of Sierras Australes (Buenos Aires Province, Argentina). Geologische Rundschau 79/3: 797-821. Stuttgart.

von Gosen, W. 2002. Polyphase structural evolution in the northeastern segment of the North Patagonian Massif (southern Argentina). Journal of South American Earth Sciences 15: 591-623.

von Gosen, W., 2003. Thrust tectonics in the North Patagonian Massif (Argentina). Implications for a Patagonia Plate. Tectonics, 22 (1): 5/1-5/33.

von Gosen, W. and W. Loske 2004. Tectonic history of the Calcatapul Formation, Chubut province, Argentina, and the “Gastre fault system”, Journal of South American Earth Sciences 18: 73–88

Wanke, A., Stollhofen, H., Lorenz, V. and Stanistreey, I. G., 1998. The pre-breakup evolution of a continental margin: Synsedimentary Karoo tectonics of the Huab-Casin in NW Namibia-Proceed. Gondwana 10. Journal African Earth Sciences. 27: 206 pp.

Windhausen. A., 1931. Geología Argentina. II Parte. Geología Histórica y regional del territorio argentino. 645 pp. Peuser, Buenos Aires.