Abstract

Field mapping, structural analysis, and U–Pb dating of rocks in the western part of the North Patagonian Massif (Argentina) yield a revised interpretation of structural evolution in the area of the ‘Gastre fault system’ that previously has been interpreted as an important dextral lineament. The Calcatapul Formation predominantly consists of metapyroclastic rocks and does not represent mylonites with a dextral sense of shear. The succession can be assigned broadly to the Early Paleozoic (?Silurian–Devonian). The Yancamil granite, dated here as Permian, intruded the Calcatapul Formation. Both units were affected by a first deformation under ~NE–SW compression, accompanied by a lower greenschist facies metamorphism. This Permian (~?Triassic) event took place prior to the intrusions of the Triassic Lipetre´n Formation. The second deformation, with comparable compression, affected the Calcatapul Formation and Yancamil granite, as well as injected dykes of the Lipetre´n Formation. Minor mylonite strips in the Lipetre´n Formation intrusions display different orientations and senses of shear and do not fit with a large-scale dextral shear zone. NW–SE-striking fracture zones in this sector of the North Patagonian Massif can be interpreted also as the result of downfaulting instead of large-scale strike-slip fault lines. These observations from the Gastre area do not support the existence of the dextral Gastre fault system as a large-scale, intracontinental structural element that traverses extra-Andean Patagonia.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: Patagonia; Gastre area; Tectonics; U-Pb dating; Late Paleozoic; Triassic

1. Introduction

The North Patagonian Massif in southern Argentina (Fig. 1) is delimited by the Río Chubut in the south, the Río Negro in the north, the Atlantic coast in the east, and the foothills of the Patagonian Cordillera in the west. It consists of poorly exposed Precambrian–Early Paleozoic rocks intruded by Early to Late Paleozoic granitoids and some younger plutons. These units are covered and obscured by widely distributed Triassic to Tertiary magmatic and sedimentary rocks.

Different geotectonic interpretations have been ascribed to Patagonia. It has been interpreted as either a terrane, accreted to the southwestern margin of Gondwanan South America during the Late Paleozoic–Triassic (Ramos, 1984, 1986), or an integral part of South America since the Early Paleozoic (e.g. Dalla Salda et al., 1992a,b, 1993, 1994).

In the western part of the massif, the Central Patagonia Batholith (Rapela and Kay, 1988) is represented by scattered exposures of intrusions from the Gastre area in the southeast to the Patagonian Cordillera in the northwest (e.g. Rapela et al., 1992). The Upper Triassic–Lower Jurassic age of the intrusions has been shown by radiometric dating (e.g. Alonso, 1987; Rapela et al., 1991, 1992; Linares et al., 1997). The magmatic rocks of the batholith are distinct from the Mamil Choique Formation intrusive rocks, which are interpreted as Precambrian to Early Paleozoic and/or Late Paleozoic in age (e.g. Ravazzoli and Sesana, 1977; Proserpio, 1978b; Nullo, 1978b; Llambias et al., 1984; Rapela et al., 1992).

In the northern part of the Chubut province, the NW–SE-trending and tens of kilometers wide ‘Megafalla de Gastre’ (Rapela et al., 1991), ‘Gastre Shear Zone System’
(Rapela et al., 1992), or ‘Gastre Fault System’ (Rapela and Pankhurst, 1992; Rapela, 1997) has been hypothesized, partly based on the ‘Gastre System’ of fractures described by Coira et al. (1975). The existence of the fault system in the Sierras de Calcatapul and Lonco Trapial, near the village of Gastre (Fig. 1), has been based on fracture zones and mylonites with a dextral sense of shear (e.g. Rapela et al., 1991, 1992; Rapela, 1997). However, Franzese and Martino (1998) describe an oblique reverse displacement with a sinistral component from a mylonite in this area.
Rapela et al. (1992) and Rapela and Pankhurst (1992) propose that movements along the fault zone were related to intracontinental dextral shearing during the Late Triassic–Early Jurassic, followed by a large-scale transfer (~400–500 km) of the southern, intra-Patagonian block during Early to Mid-Jurassic times. They interpret the emplacement of the intrusions in the Gastre area as synchronous with the developing fault system and postulate that NW–SE-striking equivalents of the fault system continue northwest into the Patagonian Cordillera. Beyond a cover of Upper Jurassic and younger sedimentary sequences, the fault system was thought to appear again at the Atlantic coast (~45°S), associated with volcanic rocks of the Marifil Group.

In the working hypothesis of Rapela et al. (1992), Rapela and Pankhurst (1992), and Rapela (1997), the Gastre fault system was a tool for plate tectonic interpretations of the South American–South African separation. It has been interpreted as a precursor and onshore continuation of the Falklands–Agulhas Fracture Zone. Later plate tectonic reconstructions that focus on the fragmentation of southern Gondwana include the Gastre fault system as an important structural element in southern South America (e.g. Marshall, 1994; Richards et al., 1996; Watkeys and Sokoutis, 1998).

In this article, we report new evidence from the area between the village of Gastre and the northern part of the Sierra de Calcatapul (Fig. 1). The results shed doubt on the existence of the Gastre fault system as it has been proposed in previous interpretations, particularly in terms of the dextral sense of displacement, intracontinental dimensions, and plate tectonic importance. The evidence leads to a different structural interpretation of that area in the western part of the North Patagonian Massif.

2. Lithological units

In the Gastre area, the Cushamen Formation is exposed in two small areas (Fig. 1). Its metapsammitic to metapelitic succession has been interpreted as Precambrian and/or Early Paleozoic in age (e.g. Volkheimer, 1964, 1973; Ravazzoli and Sesana, 1977; Proserpio, 1978b; Volkheimer and Lage, 1981; Llambías et al., 1984; Dalla Salda et al., 1990; Ostera et al., 2001). Duhart et al. (2002), however, provide evidence of a Late Paleozoic age for at least parts of the Cushamen Formation.

Northwest of the village of Gastre, at the western margin of the Sierra de Calcatapul and to the northwest (Fig. 1), a distinct lithological unit, mentioned by Volkheimer (1965), was mapped, described, and named as Calcatapul Formation by Proserpio (1978a,b). Its simply deformed, low-grade metamorphic rocks (Proserpio, 1978b; Nullo, 1978b) are exposed in two occurrences indicated on the overview maps of Proserpio (1978a) and Nullo (1978a) and an additional small occurrence just west of Puesto Uribe (Fig. 1).

According to Proserpio (1978b) and Nullo (1978b), the Calcatapul Formation mostly consists of acid to intermediate metapyroclastic and volcanic rocks. In the area of

Fig. 2. Simplified geological map of the Calcatapul Formation and adjacent intrusions in the Yancamil area at the western slope of the Sierra de Calcatapul. Map is based on field mapping. For location, see Fig. 1. The line of the profile in Fig. 4 and location of the sketch map in Fig. 5 are indicated.
the Quebrada Yancamil (NW of Gastre; Fig. 2), these dominant rock types contain layers with accumulated lapilli (lens-shaped, feldspar-rich aggregates on a mm to cm scale; Fig. 3a), some rhyolite layers, and conglomerates. The latter contain pebbles of mudstones, pyroclastic rocks, and rhyolites of mm to dm sizes (Fig. 3b). The pyroclastic rocks occupy the entire northeastern part of the Calcatapul Formation near Estancia Yancamil (Fig. 2). Fine-grained
varieties contain angular rock fragments of mm to cm sizes (see also Proserpio, 1978b; present Fig. 3c). In the southwestern part of the Formation, thick layers of metavolcanic rocks represent lava flows (Fig. 4) separated from one another by several m thick layers of dark phyllitic mud-/siltstone. In addition, dm-thick lenses of sandstones with quartz-conglomerates occur (Figs. 3d and 4).

According to the subvertical orientation of the main foliation, mostly parallel to the compositional layering (relic of bedding), the Calcatapul Formation is at least 1 km thick in the Yancamil exposure, without taking into account possible repetitions by folding. An along-strike continuation to the southeast is possible but not substantiated. There are no fossils reported from the unit, and such relics could not be found during our fieldwork. A (?) Middle Paleozoic (?) Silurian, (?) Devonian) age of the Formation was assumed by Proserpio (1978a,b).

In the area of Yancamil, the deformed Calcatapul Formation also has been interpreted as mylonites. Together with additional occurrences, these were used as an essential argument for the existence of the dextral Gastre fault system (e.g. Rapela et al., 1991, 1992). Along its southwestern margin, the Formation is intruded by a coarse-grained granite (Figs. 2 and 4), which shall be named Yancamil granite. Slices of pyroclastic rocks were enclosed by the granite just south of the irregular, ~NW–SE-striking intrusive contact and farther southeast (Figs. 2, 5 and 6a).

A later leucogranite facies intruded a dyke of the granite and the country rocks. Both types of intrusion are foliated together with the Calcatapul Formation rocks.

In the area of Gastre, a suite of various granodiorites and granites has been named the “Gastre Suite” (or “superunit”) and dated as 220 ± 3 Ma (Rb–Sr, whole-rock) by Rapela et al. (1992). In several outcrops from Gastre to the northwest of Sierra de Calcatapul (west of Puesto Uríbe), m- to 10 m-wide blocks of weakly foliated granites are enclosed by younger intrusive rocks of the Lipetrén Formation (Fig. 3e). The latter is widely distributed from Gastre to the northwestern parts of Sierra de Calcatapul and farther northwest (Fig. 1). It has been interpreted as Permian or Permo-Triassic in age (e.g. Proserpio, 1978b; Nullo, 1978b, 1979; Volkheimer and Lage, 1981; Cucchi, 1993). The Formation consists of various unfoliated granites, rhyolites, porphyries, and aplites. The rocks have been collectively assigned to the “Lipetrén Suite” (or “superunit”) and dated as 208 ± 1 Ma (Rb–Sr, whole-rock) by Rapela et al. (1992). They intrude the Calcatapul Formation (Fig. 2) and lead to contact metamorphism of the northern occurrence (Nullo, 1978b). Injected dykes of its porphyries, mentioned by Proserpio (1978b), cut across the steeply inclined succession and Yancamil granite intrusion (Fig. 4). The dykes mostly strike between W–E and NW–SE (Fig. 6b).
should be considered in light of a new dating of the Taquetréén Formation performed by Franzese et al. (2002), which yields a Lower Triassic age (242.9 ± 2.5 Ma, U–Pb, zircon, SHRIMP). Its volcanic rocks and sediments, which overlie the Lipetéren Formation rocks (Fig. 1), previously were assigned to the Upper Jurassic (Nullo and Proserpio, 1975; Proserpio, 1978b). As Franzese et al. (2002) point out however, the Taquetréén Formation includes products of at least two different magmatic events (Triassic, Jurassic), and a redefinition of its age and areal extent is necessary. The Taquetréén Formation is overlain by Garamilla Formation volcanic rocks (Nullo, 1978b), which yield a Jurassic age (188.1 ± 1.5 Ma, U–Pb, zircon, SHRIMP, Franzese et al., 2002). In view of the new results and on the basis of the geological situation, we assume that parts of the Lipetéren Formation have a greater age.

The Mamil Choique Formation intrusions occur north and southeast of Sierra del Medio (Fig. 1). Former age estimates for the granitoids of this Formation span the Precambrian-Late Paleozoic interval (e.g. Ravazzoli and Sesana, 1977; Nullo, 1978b, 1979; Proserpio, 1978b; Dalla Salda et al., 1994). A radiometric date from a granodiorite gneiss of the Sierra del Medio Granitoids yields 267 ± 27 Ma (Rb–Sr, whole-rock, isochron, Rapela et al., 1992). Similar Permian ages have been reported from intrusions at Mamil Choique (NW of Gastre; e.g. Linares et al., 1997; López de Luchi et al., 2000) and the areas of Comallo and Paso Flores (Varela et al., 1999), which are located more than 150 km northwest of Gastre. These ages suggest that the Mamil Choique Formation intrusions, at least in parts, are Late Paleozoic (Permian) in age, as is also supported by the dating of the granites at Río Collón Curá (Linares et al., 1998).

In the Gastre area, the Laguna del Toro Granitoids (Rapela et al., 1992) correspond to the Tonalita del Platero (Volkheimer, 1964) or El Platero Formation (Volkheimer and Lage, 1981) exposed in the western areas. According to an isotopic date of a tonalite approximately 10 km NNW of Almacén El Mirador (280 ± 10 Ma, Proserpio, 1978b) and a poorly defined Rb–Sr whole-rock date of a biotite granodiorite gneiss west of Gastre (346 ± 35 Ma, Rapela et al., 1992), it is possible that at least parts of the El Platero Formation, Laguna del Toro granitoids, and Sierra del Medio granitoids belong to the same Late Paleozoic plutonism. A preliminary Rb/Sr isochron from the El Platero tonalite, however, yields 211 ± 10 Ma (Linares et al., 1997) and suggests that parts of this group of intrusions are younger.

3. Structures in the Calcatapul Formation and intrusives

3.1. D1 deformation

Within the Calcatapul Formation at Estancia Yancamil, a penetrative but heterogeneously developed S1 foliation affects all rock types, along with various clasts and lapilli (Figs. 3f and 4). In the entire area, S1 planes strike NW–SE and steeply dip to the SW or NE or are vertical (see also Proserpio, 1978b). On S1 planes, a pronounced L1 lineation is indicated by aligned sericite, pressure shadows at clasts, lens-shaped elongated lapilli, and stretched, disrupted, and extended clasts. It steeply plunges ~SW or ~NE or is vertical (Fig. 6c). We found no evidence for a gently plunging or subhorizontal orientation of L1. West of Puesto Uribe, the L1 lineation plunges E to ENE (Fig. 6d).

In a few places in the Yancamil section, we detected relics of S0/S1 cross-cutting relationships (Fig. 4). The intersection lineation strikes ~NW–SE (Fig. 6e). In most places, S1 planes are parallel to bedding planes. Neither F1 folds nor way-up indicators were found.

At the southwestern margin of the Calcatapul Formation, the S1 foliation cuts across the intrusive contact of the Yancamil granite (Fig. 4) and through a slice of the pyroclastic rocks enclosed by the granite (Fig. 5). The intersection lineation strikes ~NW–SE (Fig. 6e). In most places, S1 planes are parallel to bedding planes. Neither F1 folds nor way-up indicators were found.
Fig. 6. Lower hemisphere, equal area stereoplots of structural elements in the Calcatapul Formation and intrusions of the Yancamil area except (d), which is from the exposure west of Puesto Uribe (for location, see Fig. 1). (a) Contact planes between Yancamil granite and Calcatapul Formation. (b) Orientation of dykes of the Lipetén Formation in the foliated Calcatapul Formation and Yancamil granite. (c and d) L₁ lineation on S₁ planes in the Calcatapul Formation (Hoeppener plots). (e) Bedding planes and intersection lineation in the Calcatapul Formation. (f) L₁ lineation on S₁ planes with a southwest-directed relative sense of shear in the foliated Yancamil granite (Hoeppener plot). (g and h) Hoeppener plots of slickensides on dextral (white) and sinistral (black) C₂ shear planes in the Calcatapul Formation (g) and Yancamil granite (h). In all Hoeppener plots (Hoeppener, 1955), the lineation is projected on the respective pole of the plane, and arrows indicate the relative sense of shear of the hangingwalls.
Fig. 7. Photomicrographs from thin sections; 1 mm scale bars; crossed polarizers except (a) and (b) with plane polarized light. (a) Metatuff from the Calcatapul Formation east of Quebrada Yancamil (NW of Gastre). Clasts of single feldspar grains and polycrystalline aggregates (lapilli) depict asymmetric \(\sigma \)-shapes of pressure shadows in the penetrative \(S_1 \) foliation. Relative sense of shear is reverse (ENE side up), shown by half arrows. (b) Metatuffitic rock from the Calcatapul Formation in Yancamil (east of Quebrada Yancamil). Various clasts of feldspar, feldspar aggregates, and dark volcanic rocks (arrow) are affected by the penetrative \(S_1 \) foliation. (c) Metavolcanic rock (lava flow) from the southwestern part of the Calcatapul Formation (east of Quebrada Yancamil). Plagioclase ledges display relics of intersertal textures in a dense matrix. They are partly bent, kinked, or broken due to the \(D_1 \) deformation. Orientation of trace of \(S_1 \) planes at the right side is depicted by thin dashed line. (d) Metaconglomerate from the southwestern part of the Calcatapul Formation (east of Quebrada Yancamil). Deformed pebbles of feldspar, single, and polycrystalline quartz are affected by the sericite-rich \(S_1 \) foliation (indicated by dashed lines). (e) Mylonitized Yancamil granite southeast of Quebrada Yancamil. \(\sigma \)-shapes of ductilely deformed quartz lenses and pressure shadows at feldspar clasts record a reverse sense of shear (NE side up), shown by half arrows. (f) Laguna del Toro tonalite to granodiorite west of Salina del Molle (W of Gastre). The trace of
elongated quartz and aligned muscovite/sericite and has the same orientation as that of the country rocks.

The observations suggest that both the Calcatapul Formation and the Yancamil granite intrusion were affected by ~NE–SW compression. The entire succession has been elongated parallel to the steeply plunging subvertical L1 lineation. Because of the heterogeneous foliation development, the section at Yancamil does not represent a mylonite zone. Only parts of the Yancamil granite and some metapyroclastic layers were affected by mylonitization.

3.2. Microfabrics and metamorphism

3.2.1. Calcatapul Formation

In the metapyroclastic rocks, the penetrative S1 foliation is recorded by aligned sericite. The matrix consists of finest-grained feldspar and dynamically recrystallized quartz. Angular porphyroclasts of K-feldspar, single quartz grains, and feldspar aggregates are affected by stretching. They are partly disrupted and/or displaced within the foliation. Pressure shadows are filled with quartz, sericite, and ±chlorite. Only some layers can be described as mylonites, whereas most parts display a penetrative S1 foliation.

Single quartz grains in the matrix do not record corrosion phenomena. Small lenses are filled with coarser quartz and/or feldspar (Fig. 7a), partly converted into epidote and clinzoisite, and interpreted as lapilli. This is also assumed for some (polycrystalline) clasts that consist of plagioclase and K-feldspar within a finest-grained matrix of quartz. Clasts with randomly oriented plagioclase ledges in a finest-grained matrix (see also Proserpio, 1978b) filled with dense opaque dust (Fig. 7b) are directly comparable to lava flows. Others consist of either sericite and a fine-grained matrix of quartz or coarser-grained quartz and feldspar (compare Proserpio, 1978b). Sericite flakes often are impregnated by opaque dust and also point to a clastic input within dacitic to rhyodacitic volcanic rocks.

In the southwestern part of the Yancamil section, the metavolcanic rocks display a dense fabric of plagioclase ledges that record (relics of) intertectal and partly fluidal textures (Fig. 7c) and therefore are interpreted as lava flows. The finest-grained matrix consists of quartz, chlorite, and microbiotite and is densely filled with opaque grains and dust. Lenses and thin layers in the rocks are filled with quartz, plagioclase, and microbiotite ±sericite. They could represent amygdaloidal textures, whereas other lenses, filled with coarse-grained quartz and feldspar, are interpreted as rock fragments. Lens-shaped biotite aggregates with diffuse boundaries could be derived from mafic minerals, though these are not preserved. Also on the basis of the field observations, we assume that these lava flows represent diabase (spilites) or trachytic volcanics. We found no evidence to postulate dykes.

The volcanic rocks are heterogeneously affected by the S1 foliation. The magmatic texture is cross-cut by single S1 planes (Fig. 7c), and plagioclase is successively rotated into these planes. Such areas can change into those in which a clear foliation is developed. There, plagioclase is bent, kinked, and broken, and spaces between the dismembered fragments are filled with quartz and/or biotite. The latter is grown parallel to the S1 planes.

Within the thin lenses of metaconglomerates, a penetrative S1 foliation is recorded by aligned sericite, chlorite, and ±microbiotite and is not mylonitic (Fig. 7d). Quartz and feldspar exhibit ductile and brittle deformation, respectively. Dynamically generated quartz recrystallization grains occur in the matrix. Single clastic biotite is replaced by recrystallization grains. The microstructures in the metapelitic layers are directly comparable. There, the cross-cutting relationship between bedding (S0) and S1 foliation follows that found in the field.

The pebble content of the metaconglomerates can be assigned to several groups. Coarse K-feldspar clasts, partly with micrographic intergrowths, may be related to eroded intrusions. Single quartz grains with corrosion phenomena probably were derived from acid volcanics. As in the metapyroclastic rocks, single polycrystalline quartz pebbles internally consist of coarsely recrystallized quartz grains deformed by the S1 foliation. These clasts originated from a metamorphic complex. In the metapelitic layers and some metapyroclastic rocks, single flakes of mudstones, impregnated by opaque dust, were derived from a sedimentary complex.

The clasts’ content supports the field observations that the metapyroclastic rocks are tuffs to tuffites (see also Volkheimer, 1965; Proserpio, 1978b; Nullo, 1978b) with variable contents of volcanic and clastic debris. In this part of the Formation, pebbles also are accumulated within conglomerate layers. These clasts are affected by the penetrative S1 foliation and do not record an older foliation fabric. Except for those from a metamorphic complex, they probably were derived from the local succession.

3.2.2. Yancamil granite

In the interior, southwestern parts of the granite, sericite grew parallel to weakly developed S1 planes. Magmatic quartz is elongated with sericite ±chlorite
beards in pressure shadows and records incipient dynamic recrystallization. In the marginal parts of the granite, quartz is ductilely elongated within the penetrative, partly mylonitic S₁ foliation and contains finest-grained, dynamically generated recrystallization grains. K-feldspar and plagioclase exhibit brittle deformation, and incipient fine-grained recrystallization is detected only in high-strain areas. Magmatic biotite and muscovite are affected by shearing and replaced by biotite and sericite, respectively.

In the granite/leucogranite dyke, the partly mylonitic foliation is recorded by extremely elongated quartz that records subgrain formation and dynamic recrystallization. Feldspar exhibits brittle deformation.

The microstructures suggest that the Yancamil granite was affected by a heterogeneous, solid-state deformation after cooling. The deformation took place under lower greenschist facies metamorphic conditions that also appear in the Calcatapul Formation rocks, as shown by the growth of sericite + chlorite ± biotite, the dynamic recrystallization of quartz, and the mostly brittle deformation of feldspar in both units. According to Nullo (1978b), deformation and metamorphism took place prior to the intrusion of the Lipétrén Formation magmatic rocks. Other than in parts of the Yancamil granite and some layers of the pyroclastic rocks, where shearing is intensified and mylonites occur, the heterogeneously foliated rock succession generally cannot be interpreted as mylonites.

3.3. Sense of shear

At and near the contact with the Calcatapul Formation, σ-shapes of feldspar clasts within the S₁ foliation of the Yancamil granite indicate a top-to-southwest sense of shear parallel to the steeply plunging L₁ lineation (Figs. 4 and 6f). Comparable feldspar σ-clasts within the granite dyke support this uplift of the northeastern block parallel to the pronounced L₁ lineation (Fig. 4). On the microscale, this relative sense of shear is supported by σ-shapes of polycrystalline quartz lenses (Fig. 7e), pressure shadows at feldspar porphyroclasts, displaced feldspar clasts, S/C fabrics, and micro shear bands.

Microscale shear sense indicators in the metapyroclastic rocks of the Calcatapul Formation are asymmetric σ-shapes of pressure shadows (Fig. 7a), displaced porphyroclasts, and some S/C fabrics. They are comparable to σ-shapes of pressure shadows at single plagioclase grains and quartz-feldspar lenses and displaced plagioclase grains in the metavolcanic rocks. In the metaconglomerates, some asymmetric σ-shapes of pressure shadows occur.

All macro- and microscale shear sense indicators in the different lithological units prove a general uplift of the northeastern blocks parallel to the steeply plunging L₁ lineation. No evidence for a dextral sense of shear was found.

3.4. D₂ deformation

The D₁ structures in the Calcatapul Formation and Yancamil granite are cross-cut by a conjugate set of steeply inclined to subvertical, dextral and sinistral, C₂ shear planes (Figs. 4 and 6g and h). Their relative sense of shear is depicted by subhorizontal slickensides. Both planes are spaced on the dm scale. In some m-wide parts of the outcrops, however, they are condensed to the cm scale. There, both plane sets are rotated toward the finite orientation of the S₁ foliation planes, and the ~NW–SE-striking dextral planes partly dominate (Fig. 4).

The conjugate set of C₂ planes also cuts across cm- to dm-thick rhyolitic to granitic dykes of the Lipétrén Formation, which intruded the Yancamil granite and Calcatapul Formation rocks after the ductile D₁ deformation (Fig. 4). These planes are the first deformational structures in the dykes. At the northeastern margin of the Calcatapul Formation, the conjugate set of C₂ planes also cuts across the Lipétrén Formation magmatic rocks, which intruded the vertical Calcatapul Formation succession. On the basis of the orientation of the set of dextral and sinistral C₂ planes (Fig. 6g and h), we can estimate a NE–SW compression with a subhorizontal orientation of σ₁.

4. Laguna del Toro and Gastre suite granitoids

Southwest of Sierra de Calcatapul, west of Salina del Molle, a tonalite to granodiorite of the Laguna del Toro Granitoids (Rapela et al., 1992) is exposed in an area mostly occupied by rocks of the Lipétrén Formation (Fig. 1). The rocks record a weak, diffuse foliation in which lens-shaped mafic enclaves occur (Fig. 3g). The steeply inclined to vertical foliation strikes N–S to NE–SW. Poorly developed feldspar σ-clasts display an oblique sinistral sense of shear (Fig. 8a) parallel to the weak lineation recorded by aligned feldspar, amphibole, and biotite.

On the microscale, the poorly defined foliation does not record evidence of a clear solid-state deformation (Fig. 7f). Plagioclase, biotite, and, partly, amphibole depict a weak alignment of the long axes. Coarse-grained magmatic quartz is elongated only in some parts and can contain single, coarse recrystallization grains. The partial conversion of biotite into chlorite, undulatory extinction of quartz, and bending of single plagioclase can be assigned to the effects of a younger slight deformation. The structures in the outcrop suggest that the intrusion was deformed during emplacement and/or cooling.

A comparable mechanism is reasonable for the studied Gastre Suite granites. West of Gastre, a hornblende-biotite granite, described by Rapela et al. (1992), depicts a diffuse and steeply NE-dipping foliation with a weak lineation (Fig. 8b). Clear shear sense indicators could not be found. A cross-cutting conjugate set of subvertical, ~N–S- and...
NW–SE-striking dextral and sinistral shear planes, respectively, broadly indicate ENE–WSW compression (Fig. 8c). This deformation affected the intrusion after the formation of the diffuse foliation fabric. The conjugate set of shear planes can be broadly compared to the C2 plane set in the Calcatapul Formation and Yancamil granite. A comparable granite NW of Gastre, however, displays a NW–SE- to WNW–ESE-striking, diffusely developed foliation (Fig. 3h). Single
feldspar σ-clasts indicate an oblique dextral sense of shear (Fig. 8d).

The few granitoids studied do not demonstrate a consistent overall trend of structures or sense of shear. Their diffuse foliations suggest that they were affected by compression during emplacement and/or cooling (magmatic foliation of Rapela et al., 1991 and Rapela and Pankhurst, 1992). However, we could find no clear indication of a direct relation with a developing Gastre fault system. Some parts could represent equivalents of the weakly foliated granites enclosed by the unfoliated intrusive rocks of the Lipetřén Formation.

5. Gastre mylonites

East of the village of Gastre, an approximately 30 m thick mylonite strip is exposed within porphyries and fine-grained granites of the Lipetřén Formation (Fig. 1), which contain blocks of a weakly foliated granite. The dark mylonite zone strikes ~N–S and dips to the ~W (Fig. 9). Feldspar σ- and δ-clasts, and single S/C fabrics in the mylonite foliation (Smy) indicate an uplift of the western block parallel to the mylonite lineation (Lmy) but with a sinistral component (Fig. 8e). This mylonite zone was the thickest strip found in the entire area. A nearby ~3 m thick mylonite strip in the Lipetřén Formation also dips to the west and records a top-to-east sense of shear (Fig. 8f). It should be noted that Nullo (1978b) also mentions mylonite strips in the Lipetřén Formation that record a dip between 85° and 90° to the east.

Northwest of this location, NE and SE of Estancia Jaramillo, we found two additional ~20 cm thick mylonite strips (Fig. 1). The first one, in the Lipetřén Formation, strikes N–S and dips steeply ~W. It records a dextral sense of shear (Fig. 8g) and laterally thins out in the porphyric rocks. The second, a ~NW–SE striking mylonite strip in the Gastre suite granite, indicates a dextral sense of shear (Fig. 8h) that follows that of the weak older foliation at the same locality (cf. Fig. 8d).

On the microscale, the foliation of the mylonite strips is recorded by aligned sericite and extremely elongated quartz lenses, which are partly to entirely replaced by subgrains and dynamically generated recrystallization grains. In the mylonitized Gastre suite granite, elongated quartz records relics of former coarse recrystallization grains formed during the initial foliation development (emplacement-related and/or during cooling). Porphyroclasts of K-feldspar and plagioclase in the mylonites exhibit brittle deformation and record alterations to sericite. The relative sense of shear is indicated by displaced feldspar, single S/C fabrics, and shear bands, as well as asymmetric σ-shapes of quartz lenses and pressure shadows at feldspar porphyroclasts (Fig. 7g and h), which confirms the shear sense found in the field. According to the microfabrics, the local mylonite formation took place under lower greenschist metamorphic conditions, whereas single cross-cutting shear planes were formed under brittle conditions.

In the Lipetřén Formation of Sierra de Calcatapul, the NW–SE-trending cataclastic fault line just northeast of Gastre (Fig. 1), indicated as an inferred fault on Proserpio’s (1978a) geological map, can be confirmed. It and three additional zones have been interpreted as the main fracture zones of the Gastre fault zone by Rapela et al. (1992). Northeast of Estancia Jaramillo, the fracture zone covers an area farther northeast in the Lipetřén Formation rocks. In different outcrops, however, the various brittle structures do not reveal a clear dextral sense of shear. We could detect no clear offsets of different lithological units in the field, nor are they depicted on the maps.

Furthermore, the few and thin mylonites with different orientations record a variable but not consistent (dextral) sense of shear. Their relations to the cataclastic rocks of the fracture zones are unclear. In general, they do not represent important mylonites that can be related to a large-scale, NW–SE-trending shear zone; the deformed Calcatapul Formation also does not represent a dextral mylonite zone.

6. Age of the Yancamil granite

To provide evidence about the age of the Yancamil granite, a sample for radiometric dating was taken from the Yancamil section ~20 m southwest of the intrusive contact. There, the coarse-grained granite is slightly deformed and not penetratively foliated. We provide a description of the sample preparation and analytical procedures in Appendix A.

The Yancamil granite is dominated by colorless, clear zircons. Opaque inclusions are scarce, whereas colorless,
crystal-shaped (apatite?) needles are frequent, in addition to irregular, bubble-shaped, gas-filled inclusions. The crystal surfaces often show a mother-of-pearl-like luster, which may be due to corrosive attacks after crystallization. Most of the crystals have a short prismatic habit and fractures, and many are broken into pieces. Taking into account the slight deformation of the granite, we believe the fractures are of primary origin and not artifacts of the sample preparation. The Pupin (e.g. 1988) characteristics of the crystals are dominated by S13/S14 and S8/S9 types. This equilibrium of the forms and the rather high uranium contents of the zircons (ca. 1200 ppm, see Table 1) support the assumption of a hybrid to crustal origin (Pupin, 1992, 1994) for the granite, which is compatible with a Paleozoic arc/backarc situation for the investigated area.

Table 1
Isotopic data of zircons from the Yancamil granite

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Yancamil granite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of grains</td>
<td>3 2 1 3 3 1</td>
</tr>
<tr>
<td>U (ppm)</td>
<td>3617.1 2641.9 1299.3 3495.0 4225.8 1194.2</td>
</tr>
<tr>
<td>Pb (ppm)</td>
<td>201.7 124.2 57.7 159.7 190.2 55.5</td>
</tr>
<tr>
<td>206/238 age (m.y.)</td>
<td>335.5 279.9 270.5 279.0 266.0 262.8</td>
</tr>
<tr>
<td>Notes</td>
<td>Errors are quoted at 1-sigma level.</td>
</tr>
</tbody>
</table>
Dextral shear planes dominate in some small parts of the outcrops. In general, a Triassic or younger age for this post-Lipetrén deformation and brittle fracturing along the NW–SE-striking cataclastic zones can be estimated, though additional younger events cannot be excluded.

8. Regional implications and conclusions

In view of its composition, the Calcatapul Formation seems to represent a small cutout of a former magmatic arc or backarc basin environment and thereby indicates Early Paleozoic volcanic activity in this western part of north Patagonia. The Permian age of the Yancamil granite must be considered in conjunction with the Late Paleozoic ages of other granitoids in the western part of the North Patagonian Massif, as reported by, for example, Linares et al. (1997), Varela et al. (1999), and López de Luchi et al. (2000). We can only assume that this plutonism was the result of subduction beneath the western Patagonia margin.

In this study, we found no clear indications for the existence of an intracontinental dextral Gastre fault system. This finding applies to the thin mylonite occurrences, which do not depict an overall NW–SE-striking shear zone and are not of regional importance. The Calcatapul Formation indicates a polyphase evolution that comprises several events from the ?Silurian–?Devonian (deposition) to Triassic and/or later times (latest stage deformation). It does not represent a dextral mylonite zone that might be related to a shear zone with regional and plate tectonic significance.

In the NW–SE-striking fracture zones, which depict the wide Gastre fault system, no clear proof of a dextral sense of shear has been reported. As the thin mylonites, they do not record a clear offset of different lithological units. It should be mentioned that various authors have shown sinistral displacements along the main faults of the fault system (e.g. Coira et al., 1975; Nullo, 1978b; Proserpio, 1978b; Volkheimer and Lage, 1981). Detailed field studies from the different faults, however, are still lacking. Furthermore, Proserpio (1978b) and Llambías et al. (1984) describe sinistral faults in the interior of the Sierra del Medio. Llambías et al. (1984) relate the injection of microdioritic dykes with a K–Ar age of 215 ± 10 Ma to this fault tectonics in the sierra.

The overall picture of initial fault tectonics and magmatism has been related to the Triassic episode of rifting (Rapela et al., 1992 and Rapela and Pankhurst, 1992), which produced NW–SE-trending troughs (e.g. Uliana et al., 1989). In contrast, Coira et al. (1975) assume that the onset of sinistral displacements took place during the Late Paleozoic. In the Gastre area, fracturing and local mylonite formation in the Triassic Lipetrén Formation is the only argument for the onset of faulting.

In general, fault tectonics took place and/or continued through post-Late Jurassic, Cretaceous, and Tertiary times (e.g. Volkheimer, 1965, 1973; Coira et al., 1975; Nullo, 1978b, 1979; Rapela and Pankhurst, 1992; Rapela, 1997). In this context, a (subsequent) formation of horst-and-graben structures seems probable, as noted by Volkheimer (1965, 1973) and Llambías et al. (1984) for the latest stage deformation in the Sierra del Medio area. Therefore, we can also interpret the fracture zones of the Gastre fault system as the result of (several stages of) downfaulting of different blocks that led to the formation of distinct young basins.

The evidence from the Gastre area shows no clear indication of the existence of the dextral Gastre fault system as a large-scale structural element. It seems more probable that the fracture zones are related to the formation of depressions (e.g. Pampa de Gastre southwest of Sierra de Calcatapul), which may represent downfaulted basins also outside the study area. Evidence of fracturing and thin mylonite strips is not sufficient for an important dextral lineament. Contrasting interpretations of a sinistral sense of
shear or displacements along fracture/fault zones in this part of the North Patagonian Massif do not give a consistent picture and do not support a large-scale, intracontinental, dextral fault system traversing extra-Andean Patagonia.

Acknowledgements

We are grateful to C. Prozzi (Bahía Blanca) for his help and support during fieldwork in Argentina. Discussions with E. Llambíás, A. Sato, and P. González (La Plata) improved our understanding of the North Patagonian Massif. Many thanks also to D. Gregori (Bahía Blanca) and J. Ranalli (Mendoza) for all their help and many discussions during fieldwork in Patagonia and to E. Bouhier (Dirección de Minas, San Antonio Oeste/Río Negro) for his support. We thank K. Mezger and his crew (especially H. Beier and E. Trapp) for the opportunity to carry out the isotope work at the Central Laboratory for Geochronology/Institute for Mineralogy of the University of Münster. Many thanks to H. Miller and both reviewers, J.H. Kruhl and R.J. Pankhurst, for their constructive comments and suggestions that helped improve the manuscript. The studies were enabled by grants from the German Research Foundation (DFG, Proj. GO 405/4-1 and 4-2), which are gratefully acknowledged. This article is a contribution to IGCP 436.

Appendix A

A.1. Sample preparation

The cleaned samples were crushed in a jaw breaker to a <10 mm grain size. Further grinding to a grain size of <1 mm was done by a disk mill. The heavy minerals in the sieved fractions of <0.25 mm were concentrated using a Wilfley-type wet shaking table. Further concentration of the zircons was achieved by the use of heavy liquids and a Frantz isodynamic separator. The high-quality zircons for single grain analyses were selected from the bulk sample. No air abrasion was carried out.

A.2. Analytical procedure

The handpicked crystals were washed with 3.5 N HNO₃ for 30 min at 80°C, then rinsed with distilled water and dried with acetone. Individual crystals and fractions were decomposed with 2 μl 24 N HF in steel-cased multi- or single-hole Teflon containers for 3–4 days at 180°C. The decomposed zircon was spiked with an appropriate amount (2 μl) of a 208Pb/233U tracer solution. After drying, the sample was converted to the chloride form with 2 μl of 6 N HCl overnight. The dried sample was loaded with a mixture of silica gel, HCl, and phosphoric acid on a Re single filament. Measurement of U and Pb was performed on a VG 354 mass spectrometer equipped with a Daly multiplier and an ion-counting device by peak hopping, with Pb at 1250–1350°C and U at 1400–1450°C. Mass fractionation was controlled by the measurement of the standards NBS 982 (0.3%) and U 500 (no ml). The maximum measured 206Pb/238U ratio during the course of the analyses was 487 for the fraction (3 grains) with the highest apparent ages, whereas single zircons were at 159.3 and 256.9. This is indicative for a constant and low procedure blank. Calculations were corrected with a maximum Pb blank of 0.01 pg with the following composition: 6/4 = 17.72, 7/4 = 15.52, 8/4 = 37.7 and a U blank of 0.5 pg. The initial Pb composition was calculated according to Stacey and Kramers’s (1975) Pb evolution model. The errors in Table 1 and Fig. 10 are quoted at the 1-sigma level, whereas the error of the calculated discordia is given for a 95% confidence level (see Ludwig, 1993).

References

