BLOQUES Y SECTORES CUYA ALOCTONIA-AUTOCTONIA ES DISCUTIDA
PRECORDILLERA-BLOQUES DE SAN RAFAEL, LAS MATRAS Y CHADI LEUVU-PIE DE PALO (TERRENO COMPUESTO DE CUYANIA)
Y PATAGONIA
![]() |
La sucesión del calizas está cubierta por secuencias siliciclásticas del Ordovicico Medio a Superior que varían considerablemente,
en litología, sucesión de facies, espesor, y edad (Fig). Según el modelo del bloque Laurentiano (Astini et al., 1995; Astini, 1998a,; Thomas y Astini, 2003), estas sucesiones representan una cuenca de foreland y cuña clastica sinorogénicas que se formaron como resultado
del acercamiento de Cuyania contra el margen proto-andino de Gondwana. Estas sucesiones aparecen en el cinturón oriental y central de Precordillera, y junto con las sucesiones de calizas subyacentes componen las Tectofacies Oriental
de Astini et al. (1995). A lo largo del borde occidental de las Tectofacies Oriental aparece un cinturón de facies que
han sido colectivamente denominado como Fm Los Sombreros (Keller, 1999; Thomas y Astini, 2003) que está
compuesta por olistolitos grandes dentro de una matriz pelítica que generalmente se correlaciona con Ordovícico medio. |
Los olistolitos más grandes son bloques de calizas de edad Cámbrico y Ordovícico inferior que son similares o representan facies distal, de agua algo más profunda, de las suceciones de la plataforma Cámbrico a Ordovícica Medio (Fig anterior). Como se describió para el modelo Laurentiano, (Thomas y Astini, 2003 o Keller 1999, que propone una separación en el Ordovícico medio de Cuyania de Laurentia), la Fm Los Sombreros es considerada como depositada en el talud continental a lo largo del borde occidental del microcontinente de Cuyania, junto con los olistolitos generados por desplazamientos de gravedad a lo largo de escarpas de falla o erosión en cañones submarino a lo largo de ese talud o plataforma continental empinada. La faja occidental de Precordillera están compuestas por estratos del Ordovicico Superior de las Fms Yerba Loca y Alcaparrosa y su equivalentes, que son turbiditas distales y pelitas con intrusivos máficos. Estas unidades, junto con la Fm Los Sombreros, fueron interpretadas por Keller (1999) como un contemporáneo lateral de las sucesiones proximales a distales del margen continental que va desde plataforma continental a facies de turbiditas. LA EDAD Y AFINIDAD DEL BASAMENTO DE CUYANIA Generalidades La repetida asunción que el basamento de Cuyania es de edad Grenvilliana (Dalziel et al., 1996; Kay et al., 1996; Thomas y Astini, 1996; Dalziel, 1997; Ramos et al., 1998; Sato et al., 2000) es la línea primaria de evidencia que apoyaba la derivación de Cuyania del embayment de Ouachita en Laurentia. No sólo se basó en una evidencia geocronológica limitada, sino que no tiene en cuenta la distribución global del “Grenvilliano". La Provincia Grenville, uno de los orógenos más jóvenes de las fajas en el Escudo del Canadá , tiene su área tipo en el Canadá oriental. Allí hay un mosaico de terrenos geológicos formados por una serie de eventos orogénicos que se extendieron por casi 1 Ga de los cuales entre 1.71-1.60 Ga corresponden a la orogenia del Labrador y desde 1.08 a 0.98 Ga a la orogenia Grenvillian (Tollo et al., 2004). A lo largo de los 4.500 km entre Labrador y México, la provincia Grenville registra: 1) un periodo temprano (1.3-1.2 Ga) de tectónica acrecionaria llamado orogenia Elzeviriana, 2) un periodo (1.18-1.08 Ga) de AMCG (anortosita-mangerita (granitoides portadores de piroxenos verdes, con composiciones ultramáfica a félsicas ~35-68 wt% SiO2)- charnockita-granito) y 3) un periodo final colisión continente-continente (1.08-0.98 Ga) a lo que varios autores se refieren a como la orogenia Grenvilliana (ej., Gower y Krogh, 2002) o el Pulso Ottawan de la Orogenia Grenvillian (ej., Karlstrom et al., 2001). Aún mas,
ya que varios orogenos colisionales contemperaneos se produjeron en varias paleoplacas durante el ensamble del supercontinente Rodinia, “el término orógeno Grenville se usa para referirse a Como consecuencia, las rocas con edades de 1.3 a 0.98 Ga son llamadas Grenvilliano, dándose a este término un sentido geocronológico. Para evitar confusión de las diferentes interpretaciones y para evitar la asunción que el término Grenvilliano quiere decir afinidad con Laurentia, se usa el término Mesoproterozoico para las dataciones de 1.6 a 1.0 Ga con sus eventos temprano y tardío (1.6 -1.3 Ga y 1.3-1.0 Ga, respectivamente).
Sin embargo, Kay et al. (1996) no
consideró la posibilidad de que esta signatura podría aparecer en otras rocas
Mesoproterozoicas en otra parte en Gondwana. Seguidamente,
Wareham et al. (1998) demostró una similitud íntima
de isótopos de Pb y Nd, característicos de Laurentia en rocas del Mesoproterozoico en la Antártica Oriental y Occidental, en Natal (SE Africa), y en las Falkland/Malvinas
, desafíando la asunción estricta de la afinidad Laurentiana del basamento de la Precordillera. Los defensores de la teoria Laurentiana (Astini y Rapalini, 2003,; Thomas
y Astini, 2003,; Thomas et al., 2004) ha fallado en explicar los resultados de Wareham et al. (1998), que pueden ser consistentes con un origen Gondwánico para Cuyania. Modelo parautoctono a la luz de los datos del basameno Las edades Grenvilliana de circones detríticos dominan en muchas areniscas de Ordovícico de Precordillera, cuyas poblaciones se extenden entre 1600-1000 Ma (Finney et al., 2003; Gleason et al., 2007), indicando la presencia de Mesoproterozoico en muchas area del basamento de Cuyania. No obstante, la presencia de basamento Mesoproterozoico en Cuyania, incluyendo aquéllos limitados solo a edades Grenvilliana (1200-950 Ma) podría indicar una afinidad con Gondwana Occidental mas que con Laurentia. Rocas con edades Grenvilliana componen la faja orogénica Sunsas, ubicada en el margen sudoeste del craton amazónico; ellos componen el cinturon Namaqua -Natal en el margen sur del craton de Kaapvaal, caracterizados por relaciones isotópicas de Pb bajo, y datos geocronológicos de circón recientemente adquiridos (Sims et al., 1998; Casquet et al., 2005; McClelland et al., 2005; Rapela al del et., 2005a, b) indican que la edad Grenvilliana son comunes en ambas Sierras Pampeanas occidentales y orientales de Argentina. Además, areniscas Neoproterozoicas depositado en el Cratón Río del craton de Plata tienen una cantidad significativa de circones detríticos de edad Mesoproterozoic a que incluyen un rango amplio de edades (1600-1000 Ma), encuentradas tambien en areniscas de la Precordillera y que indica la presencia de basamento de esa edad en el craton del Río de La Plata (Finney et al., 2006; Gaucher et al., 2006).
Fuente potencial para todas las poblaciones de edades de circón en las areniscas de la Precordillera se pueden encontrar, por lo tanto, ya sea en las zonas que componen partes del Cratón del Río de la Plata adyacente a la Precordillera durante el Paleozoico temprano a neoproterozoica. En cambio, la posible fuente para las edades del Mesoproterozoico temprano, Neoproterozoica, y Neoproterozoica tardío a Cámbrico temprano no aparecen en aquellas partes de América del Norte que limitan con el Ouachita embayment y, en algunos casos, de la mayor parte de América del Norte. En consecuencia se cuestiona la validez de un microcontinente de origen Laurentiano microcontinent modelo es cuestionado, y un origen de Cuyania en el oeste de Gondwana, es decir, el modelo de parautochthonous Aceñolaza y Toselli (1988), Baldis et al. (1989), y Aceñolaza et al. (2002), se considera como una alternativa viable (Finney, 2005b, fig. 6).
Según el modelo parautoctono (Fig.), la migración de Cuyania comenzó durante el Ordovícico Medio a Superior a lo largo de una falla transformante de una ubicación en la margen sur de Gondwana occidental, y llegó a su actual posición en el borde occidental de la faja magmática del Famatina en el Devónico. Proponer este modelo alternativo a aquel de tipo Laurentiano requiere de un cuidadoso y detallado nuevo examen de todas las pruebas adicionales (estratigráficos, sedimentológicos, paleomagnético, y paleobiogeografico) que se utiliza para apoyar el modelo Laurentiano y de la compatibilidad de estas pruebas con el modelo parautoctono.
En el modelo de microcontinente Laurentiano, el rifting y la separación del terreno Cuyania ocurrió antes del Cámbrico Medio, por lo que las similitudes estratigráfica deben reflejar historias paleolatitud y de ascenso y descenso de nivel eustático que controla las historias de las facies sedimentarias y la acumulación de los estratos en Cuyania, mientras se separó y alejó de de Laurentia. Thomas y Astini (1996) propusieron que Cuyania migró desde el promontorio Alabama en Laurentia, en el Cámbrico Medio; en consecuencia su sucesión estratigráfica cámbrica sería probablemente más similar a la de los Apalaches del Sur. Sin embargo, existen diferencias sustanciales con las rocas clásticas de grano fino que domina gran parte del Cámbrico Medio y Superior de los estratos más australes de los Apalaches (Conasauga Grupo), en contraste con los estratos calcáreos predominantes en la Precordillera (Fig. 6; Resser, 1938; Palmer, 1971; Thomas, 1991). In the parautochthonous model (Fig), Cuyania would have been at the same paleolatitude as Laurentia, experiencing the same eustatic events, and thus naturally could have been the site of carbonate sedimentation. Although southern West Gondwana was primarily the site of siliciclastic sedimentation during Cambrian and Ordovician time, following a long period of Brasiliano-Pan African orogenesis, carbonate sediments typical of a tropical climate did accumulate locally as recorded by the lowermost Cambrian Cerro Victoria Fm of Uruguay (Sprechmann et al., 2004; Gaucher et al., in press). It is possible that Cuyania during Cambrian to Mid Ordovician time bore the same relationship to West Gondwana as Florida does today with North America, i.e. as a passive margin, carbonate platform free of siliciclastic sediment and extending into a tropical ocean.
Tectono-sedimentary significance of the Middle- Upper Ordovician stratigraphic record
The
coarse-grained, overlying siliciclastic successions (Las
Vacas and Trapiche Fms in the north, the La Cantera Fm
in the Villicum range to the south) are interpreted as
coarser fractions of the clastic wedge, which arose from
the collision of the Cuyania microcontinent with the proto-
Andean margin of Gondwana and prograded westwards
(Thomas and Astini, 2003). Separate basins in the California borderland (e.g., Los Angeles, Santa Barbara, and Santa Maria) subsided to bathyal depths at approximately the same time, yet each had its own separate subsidence history, and the age of the Monterey Fm is somewhat different in each basin (Behl, 1999). This example presents a viable alternative explanation for the differences in age of the base of the Gualcamayo Fm in the Precordillera with sections at different localities recording different subsidence histories for different pull-apart basins. Proponents of the Laurentian microcontinent
model have not considered this alternative explanation. But this was not an original idea, having been proposed by many others, from Borrello (1969) to von Gosen et al. (1995), who have studied these rocks. These basins are characterized by considerable longitudinal and lateral basin asymmetry, including half-grabens, episodic rapid subsidence, abrupt lateral facies changes and local unconformities, greatly variable depositional processes within the same basin (pelagic settling, turbidity flows, mass flows, and gravity flows), marked contrasts in stratigraphy, facies geometry, and unconformities among different basins in the same region (Astini, 1998a, b).
The large rounded boulders of the Las Vacas conglomerate (clasts of meta-sandstone and quartzite and various plutonic and volcanic rocks) indicate erosion from mountainous terrane and transportation by rivers down steep gradients directly to the margins of the depositional basin. Most of the olistoliths are limestone blocks from the San Juan Fm; many are very large (> 1 m), and many are angular with flat surfaces representing bedding and fractures. And, everywhere, even where they are most abundant, the olistoliths are surrounded by rounded boulders of the conglomerate (Figs.).
The Laurentian microcontinent model requires that
the Middle-Upper Ordovician strata of the Precordillera be deposited in a foreland basin; thus, many
very different attempts have been made to reconcile the clear evidence of strike-slip basins and related extension
with the framework of a continent-continent collision.
Initially, post-collisional relaxation and rebound
were proposed (Astini et al, 1995; Astini, 1998a). More, recently thick-skinned thrusts were proposed to
explain generation of the olistoliths of the Las Vacas
Fm (Thomas and Astini, 2003; Astini and Davila,
2004), but without reconciling the co-occurrence of
extreme compression required for the thrusts with the
extensional regime of the adjacent basins in which the
olistoliths were deposited, nor explaining the intimate
depositional relationship of the olistoliths with the
boulder conglomerate, nor explaining the occurrence of
Las Vacas boulders in the Gualcamayo Fm. Most
recently, Thomas and Astini (2005) proposed a third
alternative, namely thin-skinned thrusts to explain the
olistoliths. These hypotheses were proposed to explain
the Middle-Upper Ordovician stratigraphy that is specific
to the Guandacol area, a very small part of the
Precordillera, but it is very different from correlative successions in the rest of the Precordillera and in the
San Rafael region.
Thus, it is highly probable that the K-bentonites in the Precordillera succession represent ashes erupted from volcanoes of the Famatinian arc (Baldo et al., 2003; Fanning et al., 2004). However, contrary to most interpretations, this does not support the Laurentian model in which Cuyania was approaching the Famatinian arc from the west (present coordinates). In recent paleogeographic reconstructions for Early and Mid Ordovician time (Dalziel, 1997, figs. 16; Cocks and Torsvik, 2002, figs. 4 and 5), the Famatinian arc faces to the east and is located between the equator and 30º S latitude. Assuming the same controls and general patterns of atmospheric circulation as those operating today, the prevailing winds in this paleolatitudinal belt, the southeast trade winds, would have blown and thus carried volcanic ashes to the northwest (Ordovician coordinates). This direction is opposite
that necessary to disperse the ashes to the Cuyania terrane
if it was approaching from the east (Ordovician
coordinates) as required by the Laurentian model
REEVALUATION OF CAMBRIAN PALEOMAGNETIC
DATA FOR CUYANIA However, they did not consider that
Cuyania may have occupied a different position within
Gondwana. A Cambrian paleolatitude of ~20º S places
the Cuyania terrane on the southern margin of West
Gondwana (present coordinates) using the Cambrian
paleogeographic reconstructions of Hoffman (1991) and
Dalziel (1997), and recent refinements in the early Paleozoic
apparent polar wander path (APWP) for Gondwana
(Meert, 2003; McElhinny et al., 2003) result in a nearequatorial
position (~5-20º S) for the present southern tip
of South America at ~530 Ma with a narrow Iapetus
Most papers supporting the Laurentian microcontinent
model (Astini et al., 1995; Thomas and Astini, 1996;
Thomas and Astini, 2003; Thomas et al., 2004), or some
variation on it that involves a Laurentian origin (Dalziel,
1997; Keller, 1999), invoke as evidence changes in affinities
of Early and Mid Ordovician benthic faunas of the
Precordillera. Typically, they include figures (e.g., Astini
More recently, Thomas et al. (2004) state: “Endemic faunas replaced the Cambrian Laurentian faunas by Early Ordovician time, indicating isolation of the Precordillera after rifting from Laurentia" Brachiopods What one finds is that the percentage of Toquima- Table Head (or Laurentian) genera decreases in successive brachiopod zones through the Lower and lower Middle Ordovician: from 90% in the Archaeorthis zone to 60% in the Huacoella-Niquivilia zones to 65% in the Monorthis zone to 60% in the Ahtiella zone (Fig. 12). Yet, the number of genera varies greatly with the Ahtiella zone having nearly twice as many genera as any of the other zones. If one uses the percentages and the total number of genera to determine the actual number of Laurentian genera appearing for the first time in each zone, one finds that that number increases dramatically in the Ahtiella zone (Table 1). These data conflict completely with the statement of Thomas and Astini (1996) regarding no faunal migrants reaching Cuyania from Laurentia in the Early to early Mid Ordovician. A large number of Laurentian brachiopod genera, 24 in fact, did reach Cuyania during this time, as well as an appreciable number of Laurentian trilobite genera (namely the genera Holia, Peltabellia, Uromystrum and Ectenonotus reported by Vaccari, 1994, p. 113). These data also indicate that the number of Laurentian brachiopod genera that dispersed to Cuyania in the early Mid Ordovician is two to three times greater than the number that migrated during the time represented by any zone in the Lower Ordovician.
Regardless, the biogeography of the benthic faunas is compatible with the parautochthonous model. The primary control on the distribution of the Laurentian fauna, as it is for all benthic invertebrates, is water temperature, which, in turn, is related to paleolatitude. In addition, strong westward flowing (early Paleozoic coordinates) equatorial currents readily would have dispersed the larvae from Laurentia and to Cuyania, a carbonate platform located in the tropics on the southern margin of Gondwana
Thus, in the parautochthonous model, the occurrence of C. hintzei can be readily attributed to the low paleolatitude of Cuyania and to larval dispersal by oceanic currents. In upper Lower Ordovician strata of Cuyania, i.e. in the lower part of the San Juan Fm in the Precordillera and within Ponón Trehué Fm in the San Rafael area, conodont faunas of the North Atlantic province replace those of the Midcontinent province at a stratigraphic level corresponding to a global transgression (Lehnert et al., 1998). The North Atlantic conodont faunal province reflects coolwater and is developed in shallow-water platform settings at high paleolatitudes and in deeper-water outer shelf and slope settings at low paleolatitudes. From the distributions of the Midcontinent and North Atlantic faunal provinces, Lehnert et al. (1998, 1999) concluded that Cuyania was derived from the southern margin of Laurentia at low paleolatitude and that by the late Mid to early Late Ordovician it was located at high paleolatitude, a considerable distance away from Laurentia and near to Gondwana - conclusions that were cited most recently by Astini and Rapalini (2003) as evidence of the Laurentian origin of the Precordillera. This assertion is here challenged. Thus, the occurrence of Midcontinent conodonts in Cuyania reflects paleolatitude (expressed in water temperature) and oceanic larval dispersal and not necessarily any direct connection to Laurentia. Besides Cuyania and Laurentia, Midcontinent province conodonts are common in shallow-water sediments that accumulated at low paleolatitude in Australia in the Mid Ordovician (Webby et al., 2000), indicating that larval transport by oceanic currents could readily disperse Midcontinent conodonts from Laurentia to Cuyania on the southern margin of West Gondwana. The replacement of Midcontinent faunas by North Atlantic faunas correlates with a global sea-level rise and can be explained by a change in water temperature attributed to the sea-level rise and possibly also to the movement of Cuyania to higher paleolatitudes associated with the overall long-term migration of Gondwana (Fig. ).
According
to proponents of the Laurentian microcontinent model, these
conodont faunas should become more dissimilar upsection
as a result of the increasing distance and change in paleolatitudes
between Laurentia and Cuyania. From this, it follows
that conodont paleobiogeography must be used with caution
in paleogeographic reconstructions.
More surprising is the fact that the evolutionary lineage occurs in strata interpreted as foreland basin sediments recording the docking of Cuyania with Gondwana. Thus, on the one hand Astini (Astini and Rapalini, 2003) argues that the conodont lineage represents isolation of Cuyania, while on the other, he interprets the strata containing the conodont lineage to have been deposited during the collision of Cuyania with Gondwana (Astini et al., 1995; Thomas and Astini, 1996; and several others). Neither Albanesi and Barnes (2000) nor Astini and Rapalini (2003) considered other models for producing the environmental perturbations and geographic isolation that may have influenced the micro-evolutionary event. The parautochthonous model with Cuyania as a carbonate platform on the margin of Gondwana, experiencing extension and subsidence of several pull-apart basins along a transform fault, surely would have.
It is the ultimate argument used by proponents of the Laurentian microcontinent model to negate inconsistencies of their model with any other evidence (e.g., detrital zircon age populations). Nevertheless, Cambrian trilobite paleobiogeography is not inconsistent with the parautochthonous model. In fact, the abundance, diversity, and distribution of trilobites in Cambrian strata of the Precordillera are consistent with Cuyania having been a carbonate platform in tropical waters on the southern margin (present coordinates) of West Gondwana during the Cambrian.
Why couldn’t late Early Cambrian trilobites, largely olenellids, have done the same?
In inner platform facies (the La Laja, Zonda, La Flecha and lower La Silla formations and, in the northernmost Precordillera, the Cerro Totora and Los Hornos formations), trilobites are common and diverse in only a few zonals intervals (Bordonaro, 2003), e.g. the Upper Cambrian Crepicephalus Zone (Fig. ). Most zones are represented by few species (e.g. 4 species in the Olenellus Zone in the La Laja Fm, but only 1 for that zone in the Cerro Totora Fm; 2 in the Middle Cambrian Bolaspidella Zone; only one in the Upper Cambrian Aphelaspis Zone and two in the Upper Cambrian Saukia Zone). Some zones (e.g. Cedaria Zone, and Dunderbergia to Prosaukia Zones) are not represented because coeval strata (e.g. the Zonda and Los Hornos formations and part of the the La Flecha Fm) lack trilobites; other zones (particularly Albertella and Plaguira-Poliella) are missing at the lower Middle Cambrian Hawke Bay hiatus (Bordonaro, 2003). These gaps are similar to, but not identical to, the successions in the Appalachians, where some zones are not represented.
In contrast, in the southern Applachians (Resser, 1938), trilobites are found only in the Nolichucky Fm of the lower Upper Cambrian. They represent only the Cedaria and Crepecephalus zones, which include, respectively, 17 species in 11 genera and more than 100 species in 16 genera. Higher trilobite zones are not represented in the southern Appalachians. Similar large disparities in numbers of genera, relative to the Precordillera, have been reported for the Elvinia and Saukia zones of the central and northern Appalachians and in the more or less complete succession of Upper Cambrian zones of the Llano Uplift of Texas (Lochman-Balk and Wilson, 1958).
In outer platform facies in olistoliths, this zone is represented by abundant, diverse agnostids and by five genera of polymeroids represented by endemic species (Borrello, 1971). The Bathyuriscus (or Ehmaniella) Zone is represented in the La Laja Fm by four genera with six species, all of which are endemic. In olistoliths, the coeval Oryctocephalus Zone includes five genera that also occur in Laurentia. However, two of these (Tonkinella and Oryctocephalus) occur on paleoplates that were distributed worldwide in tropical and temperate latitudinal belts during the Cambrian (Shergold, 1969; Gozalo et al., 2003). Coeval faunas from the southern Appalachians include 4 to 7 genera with 12 genera reported from the entire eastern United States. The
Glossopleura Zone is the lowest zone of the Middle Cambrian
above the Hawke Bay Hiatus. It is found only in
outer platform facies in olistoliths and is represented by
five genera, two of which are endemic to the Precordillera. Nevertheless, the Middle Cambrian trilobite faunas of the Precordillera, as with those of the Upper Cambrian, are of lower diversity than those of the Appalachians and include a significant number of endemic taxa. This comparison to faunas of the Appalachians is considered essential for testing the Laurentian microcontinent model because Middle Cambrian strata accumulated only in narrow belts on the eastern and western margins of Laurentia and, according to the model, Cuyania migrated past the southern end of the eastern belt during the Mid Cambrian (Fig.)
1. Some olenellids occur on more than one paleoplate.
Thus, when diversity of olenellids was highest and favorable conditions were present on most paleoplates, there was significant dispersal of olenellids between paleoplates.
Bordonaro (1986) later
described Olenellus (Mesolenellus) from the La Laja Fm
from the Sierra de Zonda on the basis of seven listed fragmentary specimens of the species O.(M.) zondaensis and
five very fragmentary specimens of an unidentified
species. Also, he reported seven very small fragments as
an unidentified species of Bristolia. In contrast, Arcuolenellus
megafrontalis is based on a large number (~ 30) of
very well preserved specimens from the Cerro Totora Fm
(Vaccari, 1988), but these are from only a single, thin (~ 20 cm) shale interval at the very top of the formation
and nowhere else in the section that is several tens of
meters thick. One incomplete glabella from the Los Túneles Finally, Astini et al. (2004) report olenellids, unidentified at family, genus, or species level, occurring with Salterella in the Ancaucha olistolith. This is the total report of olenellids from the Precordillera.
5. Given the information in 3 and 4, it follows that the olenellid fauna of the Precordillera is a very small sample, in terms of both diversity and abundance, of the coeval olenellid fauna of Laurentia. In addition, although Cuyania must have been in part adjacent to the southern Appalachians in late Early Cambrian time, according to the Laurentian microcontinent model, the fauna of the Precordillera is endemic at the species level and its genera are more representative of the western Cordillera.
Given the complete absence of trilobite bearing Cambrian strata in all of West Gondwana except Morocco, far removed at high southern paleolatitude, the only way in which trilobite faunas could have populated Cuyania would have been by larval dispersal from Laurentia, and that larvae likely would have included “Laurentian” olenellids as well as Salterella. Several genera of olenellids were able to migrate across narrow oceans and between paleoplates in early Early and mid Early Cambrian time. Thus, there is no reason to assume that some
genera could not do so again in late Early Cambrian time. Thus, it appears likely that their larvae could disperse across narrow oceans, provided that the environment was roughly the same on both sides of the ocean.Your model with dispersal of Olenellus and Olenellus-like trilobites from Laurentia westwards across a narrow ocean to the Precordillera terrane seems not unlikely.”
Finally, Benedetto (2003) states that the
inner-shelf Olenellid trilobite Realm in the Precordillera Thus, the fauna of the Precordillera is a very small sample of the “Laurentian” fauna; a situation that, according to Benedetto (2003), is consistent with dispersal by oceanic circulation.
Whether or not olenellid
trilobites dispersed westward to Antarctica is difficult to
determine because of their brief existence in Cuyania and
the very limited and incomplete Cambrian fossil record
for Antarctica (Palmer and Gatehouse, 1972; Palmer and
Rowell, 1995). Some non-olenellid, benthic trilobites of
Laurentian affinity did disperse to East Gondwana in the
Early Cambrian, namely Bonnia and Kootenia, and the
lower Upper Cambrian Aphelaspis Zone of Laurentia is
recognized in the Minaret Fm of Antarctica by the occurrence
of Laurentian species (Shergold and Webers, 1992).
Graptolites are common and faunas are diverse in Middle and Upper Ordovician strata of the Precordillera (Maletz and Ortega, 1995). They represent the Pacific faunal province that was of global extent at low paleolatitude (Finney and Chen, 1990). In contrast, graptolites of the Atlantic faunal province, also of global extent but at high paleolatitude, occur in Lower and Middle Ordovician strata of the Famatinian belt and the Cordillera Oriental. The sharp contrast between the two regions in
faunas of the Mid Ordovician when provincialism was
DISCUSSION: THE PARAUTOCHTHONOUS MODEL RECONSIDERED
Located on the southern (present coordinates) margin of West Gondwana in the Cambrian, Cuyania would have been part of, or adjacent to, Mesoproterozoic and Neoproterozoic orogenic belts composing and bordering the Río de la Plata and Kalahari cratons - a location consistent with detrital zircon and paleobiogeographic evidence. Considering that Hoffman’s reconstruction may not portray accurately this continental margin, Cuyania is shown in a general location and as an oversized terrane to increase its visibility in Fig. 5. The constraints imposed by Hoffman’s reconstruction also require that Cuyania be shown migrating along a curved path from Cambrian to Devonian time and rotating in the process. However, given the proposal that it migrated along a transform fault, it is more likely that it followed a relatively straight path and did not rotate.
For example, Peralta (2005a, b) has realized and subsequently confirmed, that many of the large olistoliths composed of siliciclastic strata in the Los Sombreros and Rinconada formations were derived from the La Chilca, Los Espejos, Talacasto and Punta Negra formations of Silurian and early Devonian age, indicating that various parts of the Los Sombreros and Rinconada formations were deposited during early Devonian time. Peralta has interpreted the olistostromes to represent extensional pull-apart basins along major strike-slip faults. In addition, Peralta and Heredia (2005) have discovered that the Upper Ordovician Empozada Fm at San Isidro is overlain stratigraphically by a thick succession of shale and siltstone with olistoliths of shale that have Devonian land plant fossils, as well as abundant, huge olistoliths of Empozada Fm. The Empozada Fm stratigraphically overlies the Estancia San Isidro Fm that includes huge olistoliths composed largely of Middle and Upper Cambrian carbonate strata. According
to the Laurentian microcontinent model (Thomas and
Astini, 2003), deposition of the carbonate olistoliths,
those of both the Estancia San Isidro and Los Sombreros
formations, occurred on the western continental slope and
rise of the Cuyania microcontinent (Fig. ). However, the
stratigraphic succession at San Isidro (Estancia San Isidro
and Empozada formations) more likely accumulated in a
strike-slip extensional basin because of 1) its great variety
of sediment types representing a diversity of shallow and
deep water depositional processes and 2) the Empozada Now Peralta and Heredia (2005) have discovered that this extensional setting, possibly driven by movement along major strike-slip faults and operating from Mid to Late Ordovician time, was also active in Devonian time. Taking into account Peralta’s discoveries and re-interpretations of the Los Sombreros and Rinconada formations, it is apparent that huge strike-slip basins are present in the Precordillera, some of the most amazing examples in the world, and that they operated at least from Mid Ordovician to Devonian time.
2) Pb isotopic ratios of Grenvillian-age basement rocks are not only similar to those of Grenvillian base ment in Laurentia but also to those in other areas of West Gondwana;
BLOQUE DE SAN RAFAEL, LAS MATRAS Y CHADI LEUVU
BIBLIOGRAFIA Abruzzi, J.M., Kay. S.M.. Bickford, M.E., 1993. Implications for the nature of the Precordilleran basement from the geochemistry and age of Precambrian xenoliths in Miocene volcanic rocks, San juan province. XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos, Actas, vol. 3, pp. 331—339. Aceñolaza, F.G., Miller, H., Toselli, A.J., 2002. Proterozoic-Early Paleozoic evolution in western South America - a discussion. Tectonophysics, 354, 121-137. Aceñolaza, F.G., Toselli, A.J., 1988. El Sistema de Famatina, Argentina: su interpretación como orógeno de margen continental activo. V Congreso Geologico Chileno, Santiago, Argentina, Actas, 1, A55-A67. Albanesi, G.L., Barnes, C.R., 2000. Subspeciation within a punctuated equilibrium evolutionary event: Phylogenetic history of the Lower-Middle Ordovician Paroistodus originalis- P. horridus complex (Conodonta). Journal of Paleontology, 74, 492-502. Albanesi, G.L., Bergström, S.M., 2002. Conodont paleobiogeographical
co-evolution of the Argentine Precordillera and the
Marathon area, Texas in the Ordovician Period. Eight International Albanesi, G.L., Bergström, S.M., in press. Statistical analysis of Early-Middle Ordovician conodont paleobiogeography with special regard to the Argentine Precordillera. Geological Society of America, Special Paper. Alonso, J.L., Rodríguez Fernández, L.R., García Sansegundo, J., Heredia, N., Farias, P., Gallastegui, J., 2005. Gondwanic and Andean structure in the Argentine Central Precordillera: The Río San Juan section revisited. 6th International Symposium on Andean Geodynamics, Paris, IRD Editions, 36-39. Álvarez-Marrón, J., Rodríguez Fernández, L.R., Heredia, N., Busquets, P., Colombo, F., Brown, D., 2006. Neogene structures overprinting Palaeozoic thrust systems in the Andean Precordillera at 30o S latitude. Journal of the Geological Society, London, 163, 949-964. Astini, R.A., 1998a. Stratigraphic evidence supporting the rifting, drifting and collision of the Laurentian Precordillera terrane of western Argentina. In: Pankhurst, R.J., Rapela, C.W. (eds.). The Proto- Andean Margin of Gondwana. Geological Society of London, Special Publication, 142, 11-33. Astini, R.A., 1998b, El Conglomerado de Las Vacas y el Grupo Trapiche de la Precordillera: tectónica distensiva en el Ordovícico Tardío. Revista de Asociación Geológica Argentina, 53(4), 489-503 Astini, R.A., 2002. Los conglomerados basales del Ordovícico de Ponón Trehue (Mendoza) y su significado en la historia sedimentaria del terreno exótico de Precordillerra. Revista de Asociacíon Geologíca Argentina, 57(1), 19-34. Astini, R.A., 2003. The Ordovician-Proto-Andean Basins. In: Benedetto, J.L. (ed.). Ordovician fossils of Argentina. Secretaría de Ciencia y Tecnología, Universidad Nacional de Córdoba, 1-74. Astini, R.A., Dávila, F.M., 2004. Ordovician back arc foreland and Ocloyic thrust belt development on the western Gondwana margin as a response to Precordillera terrane accretion. Tectonics, 23, TC4008, 1-19. Astini, R.A., Rapalini, A.E., 2003. Discussion of “Proterozoic- Early Paleozoic evolution in western South America - a discussion” in Tectonophysics, 354, 121-137 (2002). Tectonophysics, 366, 143-148. Astini, R.A., Thomas, W.A., 1999. Origin and evolution of the Precordillera terrane of western Argentina: A drifted Laurentian orphan. In: Ramos, V.A., Keppie, J.D. (eds.) Laurentia Gondwana Connections before Pangea. Geological Society of America, Special Paper, 336, 1-20. Astini, R., Ramos, V.A., Benedetto, J., Vaccari, N., Cañas, F.L., 1996. La Precordillera: Un terreno exótico a Gondwana. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Actas, vol. 5, pp. 293—324. Astini, R.A., Thomas,W.A.,Yochelson, E.L., 2004. Salterella in the Argentine Precordillera: an Early Cambrian palaeobiogeographic indicator of Laurentian affinity. Palaeogeography, Palaeoclimatology, Palaeoecology, 213, 125-132. Baldis, B.A., Peralta, S., Villegas, R., 1989. Esquematizaciones
de una possible transcurrencia del terrane de Precordillera
como fragmento continental procedente de áreas pampeanobonaerenses. Baldo, E.G., Fanning, C.M., Rapela, C.W., Pankhurst, R.J., Casquet,
C., Galindo, C., 2003. U-Pb Shrimp dating of rhyolite
volcanism in the Famatinian belt and K-bentonites in the
Precordillera. In: Albanesi, G.L., Beresi, M.S., Peralta, S.H.
(eds.). Ordovician from the Andes. INSUGEO, Serie Correlación Baldo, E., Dahlquist, J., Rapela, C.W., Casquet, C., Pankhurst, R.J., Galindo, C., Fanning, C.M., 2005. Early Ordovician peraluminous magmatism in the Sierra de Pie de Palo, (Western Sierras Pampeanas): geotectonic implications. In: Pankhurst, R.J., Veiga, G.D. (eds.). Gondwana 12: Geological and Biological Heritage of Gondwana. Academia Nacional de Ciencias, Córdoba, Argentina, Abstracts, p. 57. Basei, M.A.S., Siga Jr., O., Masquelin, H., Harara, O.M., Reis Neto, J.M., Preciozzi, F., 2000. The Dom Feliciano Belt of Brazil and Uruguay and its Foreland Domain, the Rio de La Plata Craton: Framework, Tectonic Evolution and correlation with similar provinces of southwestern Africa. In: Cordani, U.G., Milani, E.J., Thomaz Filho, A., Campos, D.A. (eds.). Tectonic Evolution of South America. 31st International Geological Congress, Río de Janeiro, 311-334. Basei, M.A.S., Frimmel, H.E., Nutman, A.P., Preciozzi, F., Jacob, J., 2005. A connection between the Neoproterozoic Dom Feliciano (Barzil/Uruguay) and Gariep (Namibia/South Africa) orogenic belts - evidence from a reconnaissance provenance study. Precambrian Research, 139, 195-221. Basei, M., Ramos, V.A., Vujovich, G.I., Poma, S.. 1998. El basamento metamórfico de la Cordillera Frontal de Mendoza: Nuevos datos geocronológicos e isotópicos. X Congreso Latinoamericano de Geología y VI Congreso Nacional de Geología Económica (Buenos Aires), Actas, vol. 2, pp. 412—417
Cingolani, C. A. and Varela, R. 1999. The San Rafael Block, Mendoza (Argentina): Rb-Sr isotopic age of basement rocks. II South American Symposium on Isotope Geology. Carlos Paz, Argentina
Behl, R.J., 1999. Since Bramlette (1946): The Miocene Monterey Formation of California revised. In: Sloan, D., Stout, D.L. (eds.). Classic Cordilleran Concepts: A View from California. Boulder, Colorado, Geological Society of America, Special Paper, 338, 301-313. Benedetto, J.L., 1998. Early Paleozoic brachiopods and associated
shelly faunas from western Gondwana: their bearing on
the geodynamic history of the pre-Andean margin. In:
Pankhurst, R.J., Rapela, C.W. (eds.). The Proto-Andean
Margin of Gondwana. Geological Society of London, Special Benedetto, J.L., 2003. Paleobiogeography. In: Benedetto, J.L. (ed.). Ordovician Fossils of Argentina. Universidad Nacional de Córdoba, Argentina, Secretaría de Ciencia y Tecnología, 91-109. Benedetto, J.L., Carrera, M., Sánchez, T.M., Vaccari, N.E.,
1995. The evolution of faunal provincialism in the Argentine
Precordillera during the Ordovician: New evidence
and paleogeographic implications. In: Cooper, J.D., Droser,
M.L., Finney, S.C. (eds.). Ordovician Odyssey: Short
Papers for the Seventh International Symposium on the
Ordovician System, Las Vegas, Nevada, USA, Pacific Section Benedetto, J.L., Sánchez, T.M., Carrera, M.G., Brussa, E.D.,
Salas, M.J., 1999. Paleontological constraints on successive
paleogeographic positions of Precordillera terrane during
the early Paleozoic. In: Ramos, V.A., Keppie, J.D. (eds.).
Laurentia-Gondwana Connections before Pangea. Geological Bergström, S.M., 1990. Relations between conodont provincialism and the changing palaeogeography during the Early Paleozoic. In: McKerrow,W.S., Scotese, C.R. (eds.). Palaeozoic Palaeogeograpy and Biogeography. The Geological Society Memoir, 12, 105-121. Bond, G.C., Nickeson, P.A., Kominz, M.A., 1984. Breakup of a super-continent between 625 Ma and 555 Ma: new evidence and implications for continental histories. Earth and Planetary Science Letters, 70, 325-345. Bordonaro, O., 1986. Bioestratigrafía del Cámbrico Inferior de San Juan. IV Congreso Argentino de Paleontología y Bioestratigrafía, Mendoza, Argentina, Actas, 1, 19-27. Bordonaro, O., 2003. Review of the Cambrian Stratigraphy of the Argentine Precordillera. Geologica Acta, 1(1), 11-21. Bordonaro, O., Banchig. A., 1995. Trilobites laurénticos en el Cámbrico de la Precordillera argentina. V Congreso Argentino de Paleontología y Bioestratigrafía, Trelew, Argentina, Actas, 59-65. Bordonaro, O., Beresi, M., Keller, M., 1993. Reinterpretación estratigráfica del Cámbrico del área de San Isidro, Precordillera de Mendoza. XII Congreso Geológico Argentino, Mendoza, Argentina, Actas, 2, 12-19. Borrello, A.V., 1963. Fremontella inopinata n. sp. del Cámbrico de la Argentina. Ameghiniana, 3, 51-55. Borrello, A.V., 1964. Sobre la presencia del Cámbrico inferior Olenellidiano en la Sierra de Zonda, Precordillera de San Juan. Ameghiniana, 3, 313-318. Borrello, A.V., 1969. Los geosinclinales de la Argentina. Dirección Nacional de Geología y Minería, Anales, XIV, 1-188. Borrello, A., 1971. The Cambrian of South America. In: Holland, C. (ed.). Cambrian of the New World. Wiley Intersciences, 1, 385-438. Bossi, J., Gaucher, C., 2004. The Cuchilla Dionisio Terrane, Uruguay: An Allochthonous Block Accreted in the Cambrian to SW-Gondwana. Gondwana Research, 7(3), 661-674. Brito Neves, B.B., Campos Neto, M., Fuck, R.A., 1999. From Rodinia to Western Gondwana: an approach to the Brasiliano- Pan African Cycle and orogenic collage. Episodes, 22(3), 155-166. Busby, C.J., Ingersoll. R.V., 1995. Tectonics of Sedimentary Basins. Cambridge, Massachusetts, Blackwell Science Inc., 579 pp. Campos Neto, M.C., Figueiredo, M.C.H., 1995. The Rio Doce Orogeny, Southeastern Brazil. Journal of South American Earth Sciences, 8(2), 143-162. Casquet, C., Pankhurst, R.J., Rapela, C.W., Fanning, C.M.,
Galindo, C., Baldo, E., Gonzalez-Casado, J.M., Dahlquist,
J.M., Saavedra, J., 2005. The Maz suspect terrane: a new
Proterozoic domain in the Western Sierras Pampeanas. In:
Pankhurst, R.J., Veiga, G.D. (eds.). Gondwana 12: Geological Christie-Blick, N., Biddle, K.T., 1985. Deformation and basin formation along strike slip faults. In: Biddle, K.T., Christie- Blick, N. (eds.). Strike-Slip Deformation, Basin Formation, and Sedimentation. Society of Economic Paleontologists and Mineralogists, Special Publication, 37, 1-34. Cocks, L.R.M., Torsvik, T.H., 2002. Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. Journal of the Geological Society of London, 159, 631-644. Dalla Salda, L. H., Cingolani, C., Varela, R., 1992a. Early Paleozoic orogenic belt of the Andes in southwestem South America: Result of Laurentia—Gondwana collision?. Geology 20, 617—620.
Dalla Salda, L. H., Dalziel, I., Cingolani, C., Varela, R., 1992b. Did the Taconic Appalachians continue into southern South America?. Geology 20, 1059—1062.
Dalla Salda, L. H., López de Luchi, M. G., Cingolani, C. A., Varela, R., 1998. Laurentia—Gondwana collision: The origin of the Famatinian—Appalachian Orogenic Belt (a review). In: Pankhurst, R. J., Rapela, C. W. (Eds.). The Proto—Andean Margin of Gondwana. Geological Society London, Special Publication, 142, 219—234. Dalziel, I.W.D., 1997. Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation. Geological Society of America Bulletin, 109(1), 16-42. Dalziel, I.W.D., Dalla Salda, L., Cingolani, C., Palmer, P., 1996. The Argentine Precordillera: A Laurentian Terrane? GSA Today, 6, 16-18. Dickerson. P. W., Keller, M., 1998. The Argentine Precordillera: Its odyssey from the Laurentian Ouachita margin towards the Sierras Pampeanas of Gondwana. In: Pankhurst, R.J., Rapela, C.W. (Eds.), The Proto— Andean Margin of Gondwana. Geological Society London, Special Publication, 142, 325—341. Dristas, J.A., Frisicale, M.C., 1987. Rocas piroclasticas en el sector suroeste de las sierras septentrionales de la Provincia de Buenos Aires. Revista de la Asociación Argentina de Mineralogía, Petrología y Sedimentología, 18, 33-45. Fanning, C.M., Pankhurst, R.J., Rapela, C.W., Baldo, E.G., Casquet, C., Galindo, C., 2004. K- bentonites in the Argentine Precordillera contemporaneous with rhyolite volcanism in the Famatinian Arc. Journal of the Geological Society, London, 161, 747-756. Finney, S.C., Berry, W.B.N., 1997. New perspectives on graptolite distributions and their use as indicators of platform margin dynamics. Geology, 25, 919-922. Finney, S.C., Chen, Xu, 1990. The relationship of Ordovician graptolite provincialism to palaeogeography. In: McKerrow, W.S., Scotese, C.R. (eds.). Palaeozoic Palaeogeograpy and Biogeography. The Geological Society Memoir, 12, 122-128. Finney, S., Peralta, S., Heredia, S., 2005a. Where is the foreland basin at the Cuyania-Gondwana collisional zone? In: Pankhurst, R.J., Veiga, G.D. (eds.). Gondwana 12: Geological and Biological Heritage of Gondwana, Academia Nacional de Ciencias, Córdoba, Argentina, Abstracts, p. 156. Finney, S., Peralta, S., Gehrels, G., Marsaglia, K., 2005b. The Early Paleozoic history of the Cuyania (greater Precordillera) terrane of western Argentina: evidence from geochronology of detrital zircons from Middle Cambrian sandstones. Geologica Acta, 3(4), 339-354. Finney, S., Gleason, J., Gehrels, G., Peralta, S. and Aceñolaza, G., 2004. Corrigendum to "Early Gondwanan connection for the Argentine Precordillera terrane". [Earth and Planetary Science Letters 205, (2003) 349-359. Earth and Planetary Science Letters 219, 413. Finney, S., Grove, M., Gehrels, G., Peralta, S., Heredia, S.,
2005c. Early Mesoproterozoic zircons from conglomerate
clasts and sandstones in Cambrian and Ordovician siliciclastic
strata of the Argentine Precordillera. In: Pankhurst, R.J.,
Veiga, G.D. (eds.) Gondwana 12: Geological and Biological Finney, S.C., Peralta, S.H., Heredia, S., Gehrels, G., McGraw, J., Gaucher, C., Poiré, D.G., 2006. Detrital-zircon geochronology of Cambrian-Devonian sandstones of the Cuyania (greater Precordillera) terrane of western Argentina and Neoproterozoic sandstones deposited on the Río de la Plata carton of Uruguay and eastern Argentina. Geological Society of America Abstracts with Programs, 38(7), p. 410. Fortey, R.A., Owen, R.M., 1997. Evolutionary History. In: Whittington, H.B., Chatterton, B.D.E., Speyer, S.E., 14 others. Treatise on Invertebrate Paleontology, Part O Arthropoda 1, Trilobita, Revised, Volume 1: Introduction, Order Agnostida, Order Redlichiida, Boulder, Colorado and Lawrence, Kansas, The Geological Society of America and The University of Kansas, 249-288. Fritz, W.H.,Yochelson, E.L., 1988. The status of Salterella as a Lower Cambrian index fossil. Canadian Journal of Earth Sciences, 25, 403-416. Galindo, C., Casquet, C., Rapela, C., Pankhurst, R.J., Baldo, E.,
Saavedra, J., 2004. Sr, C, O isotope geochemistry and
stratigraphy of Precambrian and lower Paleozoic carbonate
sequences from the Western Sierras Pampeanas of Argentina:
tectonic implications. Precambrian Research, 131, 1041- Gaucher, C., Poiré, D.G., Finney, S.C., Valencia, V.A., Blanco, G., Pamoukaghlian, K., Peral, L.G., 2006. Detrital zircon ages in Neoproterozoic sedimentary units of the Río de la Plata craton: unravelling its complex geological evolution. Geological Society of America Abstracts with Programs, 38(7), 410. Gaucher, C., Sial, A.N., Ferreira, V.P., Pimentel, M.M., Chiglino,
L., Sprechmann, P., in press. Chemostratigraphy of the
Cerro Victoria Formation (Lower Cambrian, Uruguay): evidence Geyer, G., Elicki, O., 1995. The Lower Cambrian Trilobites from the Görlitz Synclinorium (Germany) - review and new results. Paläontologische Zeitschrift, 69, 87-119. Geyer, G., Palmer, A.R., 1995. Neltneriidae and Holmiidae (Trilobita) from Morocco and the problem of Early Cambrian intercontinental correlation. Journal of Paleontology, 69, 459-474. Gleason, J.D., Finney, S.C., Gehrels, G.E., 2002. Paleotectonic Implications of a Mid- to Late Ordovician Provenance Shift, as Recorded in Sedimentary Strata of the Ouachita and Southern Appalachian Mountains. Journal of Geology, 110, 291-304. Gleason, J.D., Finney, S.C., Peralta, S.H., Gehrels, G.E., Marsaglia, K.M., 2007. Zircon and whole rock Nd-Pb isotopic provenance of Middle and Upper Ordovician siliciclastic rocks, Argentine Precordillera. Sedimentology, 54(1), 107-136. Gower, C.F., Krogh, T.E., 2002. A U-Pb Geochronological review of the Proterozoic history of the eastern Grenville Province. Canadian Journal of Earth Sciences, 39, 795-829. Gozalo, R., Mayoral, E., Gámez Vintaned, J.A., Dies, M.E., Muñiz, F., 2003. A new occurrence of the genus Tonkinella in northern Spain and the Middle Cambrian intercontinental correlation. Geologica Acta, 1, 121-126. Heredia, S., Beresi, M.S., 2004. La Formación Empozada y su relación estratigráfica con la Formación Estancia San Isidro (nom. nov.), Ordovícico de la Precordillera de Mendoza. Revista de la Asociación Geológica Argentina, 59(2), 178-192. Hoffman, P.F., 1991. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out? Science, 252, 1409-1412. Hollingsworth, J.S., 2005. A trilobite fauna in a storm bed in the Poleta Formation (Dyeran, Lower Cambrian), western Nevada, U.S.A. Geosciences Journal, 9, 129-143. Hollingsworth, J.S., 2006. Holmiidae (Trilobita: Olenellina) of the Montezuman Stage (Early Cambrian) in western Nevada. Journal of Paleontology, 80, 309-332. Howell, D.G., Stuart, C.J., Platt, J.P., Hill, D.J., 1974. Possible Strike-Slip Faulting in the Southern California Borderland. Geology, 2(2), 93-98. Huff, W.D. Bergström, S.M., Kolata, D.R., Cingolani, C.A., Astini, R.A., 1998. Ordovician K- bentonites in the Argentine Precordillera: relations to Gondwana margin evolution. In: Pankhurst, R.J., Rapela, C.W. (eds.). The Proto-Andean Margin of Gondwana. Geological Society of London, Special Publication, 142, 107-126 Isaacs, C.M., Garrison, R.E., 1983. Petroleum Generation and Occurrence in the Miocene Monterey Formation, California. Los Angeles, Pacific Section, Society of Economic Paleontologists and Mineralogists, 228 pp. Karlstrom, K.E., Åhäll, K-I., Harlan, S.S., Williams, M.L., McLelland, J., Geissman J.W., 2001. Long lived (1.8 – 1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Research, 111, 5-30. Kay, S.M., Orrell, S., Abbruzzi, J.M., 1996. Zircon and whole rock Nd-Pb isotopic evidence for a Grenville age and Laurentian origin for the basement of the Precordillera terrane in Argentina. The Journal of Geology, 104, 637-648. Keller, M., 1999. Argentine Precordillera: Sedimentary and Plate Tectonic History of a Laurentian Crustal Fragment in South America. Geological Society of America, Special Paper, 341, 131 pp. Keller, M., Bordonaro, O., Beresi, M., 1993. The Cambrian of San Isidro, Mendoza, Argentina: Facies and sedimentology at the platform slope transition. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1993(6), 373-383. Keller, M., Cañas, F., Lehnert, O., Vaccari, N.E., 1994. The Upper Cambrian and Lower Ordovician of the Precordillera (Western Argentina): Some stratigraphic reconsiderations. Newsletters in Stratigraphy, 31, 115-132. Llambías, E. J., Melchor, R. N., Tickyj, H., Sato, A. M., 1996. Geología del Bloque del Chadileuvú. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Actas, vol. 5, pp. 417—425. Llambías, E.J., Sato, A.M., Suárez, A.O., Prozzi, C., 1998. The granitoids of the Sierra de San Luis. In: Pankhurst, R.J., Rapela, C.W. (eds.). The Proto-Andean Margin of Gondwana. Geological Society of London, Special Publication, 142, 325-341. Lehnert, O., Keller, M., Bordonaro, O., 1998. Early Ordovician conodonts from the southern Cuyania terrane (Mendoza Province, Argentina). In: Szaniawski, H. (ed.). Proceedings of the Sixth European Conodont Symposium (ECOS VI). Palaeontologia Polonica, 58, 47-65. Lehnert, O., Miller, J.F., Repetski, J.E., 1997. Paleogeographic significance of Clavohamulus hintzei Miller (Conodonta) and other Ibexian conodonts in an early Paleozoic carbonate platform facies of the Argentine Precordillera. Geological Society of America Bulletin, 109, 429-443. Lehnert, O., Bergström, S.M., Keller, M., Bordonaro, O., 1999. Ordovician (Darriwilian-Caradocian) conodonts from the San Rafael Region, west-central Argentina: biostratigraphic, paleoecologic, and paleogeographic implications. Bollettino della Società Paleontologica Italiana, 37, 199- 214. Lieberman, B.S., 1998. Cladistic analysis of the Early Cambrian olenelloid trilobites. Journal of Paleontology, 72, 59-78. Lieberman, B.S., 2001. Phylogentic analysis of the Olenellina Walcott, 1890 (Trilobita, Cambrian). Journal of Paleontology, 75, 96-115. Lieberman, B.S., 2002. Phylogenetic analysis of some basal early Cambrian trilobites, the biogeographic origins of the Eutrilobita, and the timing of the Cambrian radiation. Journal of Paleontology, 76, 692-708. Link, M.H., 2003. Depositional systems and sedimentary facies of the Miocene-Pliocene Ridge Basin Group, Ridge Basin, southern California. In: Crowell, J.C. (ed.). Evolution of Ridge Basin, southern California: An interplay of sedimentation and tectonics. Boulder, Colorado, Geological Society of America, Special Paper, 367, 17-87. Lira, R., Millone, H.A., Kirschbaum, A.M., Moreno, R.S., 1997. Calc-Alkaline Arc Granitoid Activity in the Sierra Norte- Ambargasta Ranges, Central Argentina. Journal of South American Earth Sciences, 10(2), 157-177. Lochman-Balk, C., Wilson, J.L., 1958. Cambrian Biostratigraphy in North America. Journal of Paleontology, 32(2), 312-350. McDonough, M. R., Ramos. V. A.. Isachsen. C. E., Bowring, S. A,. Vujovich, G., 1993. Edades preliminares de circones del basamento de la Sierra de Pie de Palo. Sierras Pampeanas occidentales de San Juan, sus implicancias para el snpercontinente proterozoico de Rodinia. XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos, Actas.,vol. 3. pp. 340—342. Maletz, J., Ortega, G., 1995. Ordovician graptolites of South America: palaeogeographic implications. In: Cooper, J.D., Droser, M.L., Finney, S.C. (eds.). Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System, Las Vegas, Nevada, USA, Pacific Section Society for Sedimentary Geology (SEPM) Book. 77, 189-192. McClelland, W.C., Ellis, J.R., Roeske, S.M., Mulcahy, S.R.,
Vujovich, G.I., Naipauer, M., 2005. U-Pb SHRIMP igneous
zircon ages and LA-ICPMS detrital zircon ages from metamorphic
rocks between the Precordillera terrane and the
Gondwana margin, Sierra de la Huerta to Pie de Palo, northwest McElhinny, M.W., Powell, C., Pisarevsky, S.A., 2003. Paleozoic terranes of eastern Australia and the drift history of Gondwana. Tectonophysics, 362, 41-65. McKerrow, W.S., Scotese, C.R., Brasier, M.D., 1992. Early Cambrian continental reconstructions. Journal of the Geological Society, London, 149, 599-606. Meert, J.G., 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics, 362, 1-40. Mitchell, C.E., Brussa, E.D., Astini, R.A., 1997. Biogeography of Middle and Upper Ordovician graptolites, Precordillera terrane, Argentina: plate tectonic implications. Geological Society of America, Abstracts with Programs, 29, A379. Nilsen, T.H., Sylvester, A.G., 1995. Strike-Slip Basins. In: Busby, C.J., Ingersoll. R.V. (eds.). Tectonics of Sedimentary Basins. Cambridge, Massachusetts, Blackwell Science Inc., 425-456. Palmer, A.R., 1971. The Cambrian of the Appalachians and eastern new England regions, eastern United States. In: Holland, C.H. (ed.). Cambrian of the New World. Wiley Intersciences, 1, 169-218. Palmer. A.R., 1972. Problems of Cambrian Biogeography. 24th International Geological Congress, Montreal, Canada, Section 7 (Paleontology), Proccedings, 310-315. Palmer, A.R., Gatehouse, C.G, 1972. Early and Middle Cambrian Trilobites from Antarctica. U.S. Geological Survey Professional Paper, 456-D, D1-D37. Palmer, A.R., Halley, R.B., 1979. Physical Stratigraphy and Trilobite Biostratigraphy of the Carrara Formation (Lower and Middle Cambrian) in the Southern Great Basin. U.S. Geological Survey Professional Paper, 1047, 131 pp. Palmer, A.R., Repina, L.N., 1993. Through a glass darkly: taxonomy, phylogeny, and biostratigraphy of the Olenellina, The University of Kansas Paleontological Contributions n. 3, 1-35. Palmer, A.R., Repina, L.N., 1997. Introduction to Suborder
Olenellina. In: Whittington, H.B., Chatterton, B.D.E., Speyer,
S.E., and 14 others. Treatise on Invertebrate Paleontology,
Part O Arthropoda 1, Trilobita, Revised, Volume 1: Introduction,
Order Agnostida, Order Redlichiida. Boulder, Colorado Palmer, A.R., Rowell, A.J., 1995. Early Cambrian Trilobites from the Shackleton Limestone of the Central Transantarctic Mountains. The Paleontological Society Memoir 45, Journal of Paleontology, 69 (no. 6, suppl.), 28 pp. Pankhurst, R.J., Rapela, C.W., 1998, The Proto-Andean Margin of Gondwana. Geological Society, London, Special Publications, 142, 383 pp. Pankhurst. R. J.,. Rapela, C. W., Saavedra, J., Baldo, E., Dahlquist. J., Pascua, I., Fanning. C. M., 1998. The Famatinian magmatic arc in the central Sierras Pampeanas: An Early to mid-Ordovician continental arc on the Gondwana margin. ln: Pankhtrrst. R.J., Rapela, C.W. (Eds.), The Proto—Andean Margin of Gondwana. Geological Society London, Special Publication. 142, 343—367. Pankhurst, R.J., Veiga, G.D., 2005. Gondwana 12: Geological and Biological Heritage of Gondwana. Academia Nacional de Ciencias, Córdoba, Argentina, Abstracts, 385 pp. Peralta, S.H., 2005a. Formación Los Sombreros: un evento diastrófico extensional del Devónico (inferior? medio?) en la Precordillera argentina. XVI Congreso Geológico Argentino, La Plata, Actas, 4, 322-325. Peralta, S.H., 2005b. The Lower Emsian?-Middle Devonian? Extensional basins of the Los Sombreros and Rinconada Formations: its tecto-sedimentary significance in the evolution of the Precordillera. In: Pankhurst, R.J., Veiga, G.D. (eds.). Gondwana 12: Geological and Biological Heritage of Gondwana, Academia Nacional de Ciencias, Córdoba, Argentina, Abstracts, p. 289. Peralta, S.H., Heredia, S., 2005. Depósitos de olistostroma del Devónico (inferior?-medio?), Formación Los Sombreros, en la quebrada de San Isidro, Precordillera de Mendoza, Argentina. XVI Congreso Geológico Argentino, La Plata, Actas, 4, 326-331. Pillola, G.L., 1990. Lithologie et Trilobites du Cambrien inférieur du SW de la Sardaigne (Italie): implications paléobiogéographiques. Comptes Rendus de l’Académie des Sciences, Paris, série II, 310, 321-328. Poiré, D.G., Spalletti, L.A., Del Valle, A., 2003. The Cambrian- Ordovician siliciclastic platform of the Balcarce Formation (Tandilia System, Argentina): Facies, trace fossils, palaeoenvironments and sequence stratigraphy. Geologica Acta, 1(1), 41-60. Ramos, V.A., 1995. Sudamérica: un mosaico de continentes y océanos. Ciencia Hoy, 6, 24-29. Ramos, VA.. Basei, MAS., 1997. The basement of Chilenia: An exotic continental terrane to Gondwana during the Early Paleozoic. In: Terrane Dynamics-97 (Christchurch, New Zealand), Conference Abstracts, pp. 140—143.
Ramos, VA., Jordan, T., Allmendinger. R.W., Kay, S.M., Cortés, J.M., Palma, M.A., 1984. Chilenia: Un terreno alóctono en la evolución paleozoica de los Andes Centrales. IX Congreso Geológico Argentino, Actas, vol. 2, pp~. 84—106. Ramos, V.A., Jordan, T.E., Allmendinger, R.W., Mpodozis, M.C., Kay, S.M., Cortes, J.M., Palma, M., 1986. Paleozoic terranes of the central Argentine-Chilean Andes. Tectonics, 5, 855-880. Ramos, VA., Vujovich, G., Dallmever. R.D., 1996. Los klippes y ventanas tectónicas preándicas de la Sierra de Pie de Palo (San Juan): Edad e imiplicaciones tectontcas. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Actas, vol. 5. pp. 377—391. Ramos, V.A., Dallmeyer, R.D., Vujovich, G., 1998. Time constraints on the Early Palaeozoic docking of the Precordillera, central Argentina. In: Pankhurst, R.J., Rapela, C.W. (eds.). The Proto Andean Margin of Gondwana. Geological Society, London, Special Publications No. 142, 143-158. Ramos, V.A., Keppie, J.D., 1999. Laurentia-Gondwana Connections before Pangaea: Geological Society of America, Special Paper, 336, 276 pp.. Rapalini, A.E., Astini, R.A., 1998. Paleomagnetic confirmation of the Laurentian origin of the Argentine Precordillera. Earth and Planetary Science Letters, 155, 1-14. Rapela, C.W., Pankhurst, R.J., Casquet, C., Baldo, E., Saavedra,
J., Galindo, C., Fanning, C.M., 1998. The Pampean Orogeny
of the southern proto-Andes: Cambrian continental collision
in the Sierras de Córdoba. In: Pankhurst, R.J., Rapela, C.W.
(eds.). The Proto-Andean Margin of Gondwana. Geological
Rapela, C.W., Pankhurst, R.J.. Casquet. C., Baldo, E.. Saavedra, J., Galindo, C., l998a. Early evolution of the Proto—Andean margin of South Amenica. Geology 26, 707—710. Rapela, C.W., Pankhurst, R.J., Casquet, C., Fanning, C.M., Galindo, C., Baldo, E., 2005a. Datacion U-Pb SHRIMP de circones detriticos en paranfibolitas neoproterozoicas de las secuencia Difunta Correa (Sierra Pampeanas Occidentales, Argentina), Geogaceta, 38, 227-230.
Sato, A.M., Tickyj, H.. Llambías, E.J., 1998. Rb—Sr Grenvillian age from the Las Matras diorite, La Pampa province, Argentina. X Congreso Latinoamericano de Geología y VI Congreso Nacional de Geología Económica (Buenos Aires), Actas, vol. 2, p. 418. Sato, A.M., Tickyj, H.. Llambías, EJ., Sato, K., 1999. Rh—Sr, Sm—Nd and K—Ar age constraints of the Grenvillian Las Matras pluton, central Argentina. II South American Symposium on Isotopc Geology (Villa Carlos Paz, Argentina), Actas, pp. 122—126. Shergold, J.H., 1969. Oryctocephalidae (Trilobita Middle Cambrian) of Australia. Bureau of Mineral Resources, Geology and Geophysics Bulletin, 104, 66 pp.
Sinclair, H.D., 1997. Tectonostratigraphic model for underfilled peripheral foreland basins: An Alpine perspective. Geological Society of America Bulletin 109(3), 324-346.
Thomas, W.A., 1991. The Appalachian-Ouachita rifted margin of southeastern North America. Geological Society of America Bulletin, 103, 415-431. Thomas, W.A., Astini, R.A., 1996. The Argentine Precordillera: A traveler from the Ouachita embayment of North American Laurentia. Science, 273, 752-757.
. Thomas, W.A., Astini, R.A., 2003. Ordovician accretion of the Argentine Precordillera terrane to Gondwana: a review. Journal of South American Earth Sciences, 16, 67-79.
Thomas, W.A., Astini, R.A., Bayona, G., 2002. Ordovician collision of the Argentina Precordillera with Gondwana, independent of Laurentian Taconic orogeny. Tectonophysics, 345, 131-152.
Varela, R., Dalla Salda. L.H., 1992. Geocronología Rb—Sr de metamorfitas y granitoides del tercio sur de la Sierra de Pie de Palo, San Juan, Argentina. Revista de la Asociación Geológica Argentina 47, 271—275.
Varela, R., López de Luchi, M., Cingolani, C., Dalia Salda. L., 1996. Geocronología de gneises y granitoides de la Sierra de Umango, La Rioja: Implicancias tectónicas. XIII Congreso Geológico Argentino Argentino y III Congreso de Exploración de Hidrocarburos, Actas, vol. 3. pp. 5 19—527. Veevers, J.J., 2003. Pan-African is Pan-Gondwanaland: Oblique convergence drives rotation during 650-500 Ma assembly. Geology, 31(6), 501-504.
von Gosen, W., Prozzi, C.. 1998. Structural evolution of the Sierra de San Luis (Eastern Sierras Pampeanas, Argentina): lmplications for the Proto—Andean Margin of Gondwana. ln: Pankhurst, R.J., Rapela. C.W. (Eds.), The Proto—Andean Margin of Gondwana. Geological Society London, Special Publication, 142, 235—258. Vujovich, G., Kay, S.M., 1996. Evidencias geoquímicas del origen y ambiente geológico de las rocas metamórficas de composición máfica a intermedia de las Sierras Pampeanas Occidentales. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos. Actas, vol. 5, pp. 273—291. Vujovich, G.I., Kay, S.M., 1998. A Laurentian? Grenville-age oceanic arc/ back-arc terrane in the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina, In: Pankhurst, R.J., Rapela, C.W. (Eds.), The Proto—Andean Margin of Gondwana. Geological Society London, Special Puhlication, 142, 159—179.
Vujovich, G.I., Ramos, V.A., 1994. La faja de Angaco y su relación con las Sierras Pampeanas Occidentales. VII Congreso Geológico Chileno (Concepción, Chile), Actas, vol. 1, pp. 215—219. Wareham, C.D., Pankhurst, R.J., Thomas, R.J., Storey, B.C., Grantham, G.H., Jacobs, J., Eglington, B.M., 1998. Pb, Nd, and Sr Isotope Mapping of Grenville- Age Crustal Provinces in Rodinia. The Journal of Geology, 106, 647-659. Webby, B.D., Percival, I.G., Edgecombe, G.D., Cooper R.A., Vandenberg, A.H.M., Pickett, J.W., Pojeta, J., Jr., Playford, G., Winchester-Seeto, T., Young, G.C., Zhen, Y.-Y., Nicoll, R.S., Ross, J.R.P., Schallreuter, R., 2000. Ordovician palaeobiogeography of Australasia. Memoir of the Association of Australasian Palaeontologists No. 23, 63-126. |
|||||||||||||||||||||||||||||||||||
volver arriba |
Hipótesis de Ramos (1984) sobre aloctonia de Patgonia y configuración tectónica del sector norte de Patagonia
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||
Interacción TerrenoPanthalassan-Gondwana | Hipótesis interacción Patagonia Gondwana | Estructura transcontinental límite Patagonia Gondwana | Estructura transcontinental límite Patagonia Gondwana | Arcos del N de Patagonia relacionados con la interacción Patagonia Gondwana | Interacción final entre Patagonia Gondwana | ||||||||||||
Las figuras de arriba fueron tomadas de los siguientes trabajos, donde se expone la hipótesis de Ramos sobre la aloctonía de la Patagonia Ramos, V., Cortes, J.M., 1984. Estructura e interpretación tectónica. In: Ramos, V. (Ed.), Relatorio de la geología y recursos naturales de la provincia de Río Negro. 9 Congreso Geológico Argentino I, pp. 317–346. Ramos, V. A., 1988. Late
Proterozoic-Early Paleozoic of South America-A collisional history. Episodes, 11
(3): 168-174.
|
|||||||||||||||||
Hipótesis de Pankhurst et al 2006
|
|||||||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||
![]() |
![]() |
![]() |
|||||||||||||||
FIGURAS TOMADAS DE: Kostadinoff, J., Gregori, D. A. and Raniolo, A., 2005. Configuración geofísica-geológica del sector Norte de la provincia de Río Negro. Revista de la Asociación Geológica Argentina. LX: 368-376). Daniel A. Gregori , José Kostadinoff, Leonardo Strazzere, Ariel Raniolo, 2008. Tectonic significance and consequences of the Gondwanide orogeny in northern Patagonia, Argentina, Gondwana Research, 14: 429–450 4. Results
Candidates that fulfil such seismic velocity are the phyllite,
muscovite-bearing schist, and metasandstone of the Las Piedras
Complex that are exposed in the Río ColoradoHigh. The seismic
velocities may also be explained by phyllite, metasandstone,
marble and pelite of the Nahuel Niyeu and El Jaguelito formations
(Fig. 3), which are temporally correlated with the Las
Piedras Complex, and crop out in the Nahuel Niyeu–Valcheta
area (Caminos and Llambías, 1984).
The distribution of positive anomalies in the Viedma High and in the Choele Choel High supports the interpretation that a belt of Pampean rocks extends from the southern part of the Buenos Aires province to northern Patagonia (Figs. 3 and 10).
This is substantially
more than the 900 m thickness estimated by Melchor
(1999). Based on these results, Kostadinoff and Llambías
(2002) considered the subsurface extent of the basin to be
greater than that suggested its surface extent.
4.2.5. Lagunas Dulces anomaly
4.2.7. Laguna del Zorro anomaly
Three main lineament orientations
directions can be recognized: lineaments A and C are NE–SW
trending; lineaments B, D and E are NW–SE trending; and
lineaments F, G and the Huincul Fault zone are E–W trending.
The Huincul Fault zone is
therefore unlikely to be a suture.
In the Neuquén–Chichinales section (Fig. 10) the Due to the outline of the Huincul Fault Zone, the section
between Plaza Huincul and Picún Leufú (Fig. 10) and between
Neuquén and Chimpay represent domains of dextral transpressive
shear (Orchuela and Ploszkiewicz, 1984), where basement
rocks are exposed in the fault zone. In the section between
a) Pangaré and La Seña mylonites (Gregori et al., 2000), are formed by two belts, each 1 km wide, 15 km long, and comprising granitic augen-mylonites, protomylonites, mylonites and ultramylonites, (Figs 10, 11 and 12A) with strikes between 310° and 330°. They exhibit sinistral movement associated with an east–west compression b) Peynecura mylonitic belt (Llambías et al., 2002) is more than 500mwide, 15 kmlong, and has aNNW–SSE strike (Fig. 11). The deformation is interpreted to have occurred during the Early Triassic because is related to foliated granites of such age. No information about strain orientation is available. c) The El Jaguelito Fault zone is a 50 km long NW–SE dextral lineament that appears in the eastern area of the North Patagonian Massif (Fig. 11). According to Ramos and Cortés (1984), deformation occurred during Upper Paleozoic times. d) Peñas Blancas and La Laguna mylonites are described by Giacosa (1996). They are 10 km long, and are temporal related to the foliated Permian-aged Peñas Blancas and La Laguna Granites. Four more NW–SE mylonitic belts were recognized during regional mapping in this area, but information on strain orientation is unavailable. The timing of deformation is interpreted to be Gondwanan because the foliated granites were intruded at the same time as mylonitization occur. e) The Nahuel Niyeu lineament system is a major structure that is 25 km wide, and extends for 65 km long (Figs. 10 and 11) between the Salinas Trapalcó–Laguna Curicó Lineament (Figs. 1, 2 and 12A) and the Somoncura Plateau (Fig. 2). Nahuel Niyeu lineament includes the Arroyo Seco, Barda de Lucho, Arroyo Salado, Laguna Negra, Quiroga and Ramos lineaments, the Tardugno, Musters and Huanteleo faults and the Nahuel Niyeu, Railer and Rana thrust sheets (Fig. 10). In the La Pampa province, a mylonitic belt was described in
Cerro de los Viejos (Figs. 11 and 12A) by Tickyj et al. (1997). A
further four belts of steep gravity gradients which were interpreted
as major structures were described by Kostadinoff et al. (2001). b) The Valle Daza-Cuchillo Có lineament is a 310–320° trending belt that is 100 kmlong and characterised by a steep gradient in gravimetry data. This lineament is interpreted to represent the western boundary of the Rio Colorado High (Figs. 11 and 12A). c) The Cerro los Viejos lineament extends in a NW-direction for more than 100 km from Cerro Los Viejos and is possibly related to the Cerro Los Viejos mylonite. According to Kostadinoff and Llambías (2002), the Cerro los Viejos lineament represents the contact between the Permian Carapacha Basin and the Río Colorado High. This lineament and its associated steep gravity gradient disappears in the central part of the La Pampa province, but is identified near Algarrobo del Aguila (Fig. 11) as a 50 km long, 15 km wide lineament with steep gravity gradient. This NW-trending structure is considered to be the boundary of a Triassic basin (Kostadinoff and Llambías, 2002). d) The Macachín Rift includes Paleozoic and Mesozoic sedimentary sequences deposited in a NNW–SSE extensional basin (Figs. 11 and 12A). Outcrops of igneous and sedimentary Gondwanan rocks in the central part of the La Pampa province (Figs 2 and 4) follow WNWor NW trends, which suggest structural control. In the Buenos Aires Province strike-slip faults located north and south have been used to explain the structure of the Sierras Australes. For example, Newton and Cingolani (1990) showed a series of WNW–ESE trending sinistral strike-slip faults near Pigue and Cerros Colorados (Figs. 11 and 12A), which are evident in gravity data (Alvarez, 2004). In the Bahía Blanca area, Bonorino et al. (1987) showed the occurrence of several lineaments with steep gravity gradients south of Sierras Australes. Lineaments of importance include the Salitral de la Vidriera and Nueva Roma belts, which are strike-slip fault zones longer than 100 km in strike extent (Fig. 11).
Windhausen (1914), Keidel (1925) and Groeber (1929)
described NE–SW structures transverse to the N–S Andean In the La Pampa Province, the Carapacha Basin (Figs. 4, 11
and 12A) exhibits a NW–SE elongation, suggesting basin development
occurred during NE–SWdirection extension. Folding of
the sedimentary successions and inversion in the Carapacha Basin
(Melchor, 1999) and mylonitization of the Cerro de los Viejos
granite (Tickyj et al., 1997) dated as Late Permian (254±2 Ma),
suggests that both areas were affected by the same deformational In the Sierras Australes of Buenos Aires Province, the
Pillahuincó Group (Carboniferous-Permian) was deformed In their structural analysis of northern Patagonia, Turner and
Baldis (1978) identified several NW–SE lineaments in the area
between Bajo del Gualicho and Golfo San Matías (Fig. 2). They
suggested variable compressive stresses in the North Patagonian
Massif including: west-shortening directed (Río Limay area);
northeast-directed shortening (Salinas del Gualicho); eastdirected
shortening (Sierra Grande); and southwest-directed
shortening (El Cuy). The variation in stress directions is attributed
to counterclockwise rotation of the North Patagonian
No
evidence for dextral shearing was found in this domain.
In the western domain, strata is mildly deformed (de Beer,
1992). Folds and faults trend northwest to north (de Beer, 1990).
North-trending slickensides developed on thrust planes (Ransome
and de Wit, 1992) and stretching lineations (Cobbold
et al., 1992) indicate a component of strike-parallel displacement. In the Malvinas (Falkland) Islands, Late Permian fold and
thrust belt structures form the eastward continuation of the Cape
Fold Belt when restored into a pre-Gondwana break-up configuration. In Antarctica, the Gondwanide Orogen extends through the
Ellsworth–Whitmore Mountain block and the Pensacola Mountains
(Curtis and Storey, 1996). During Gondwanide orogenesis
the Ellsworth–Whitmore Mountain block is assumed to have
occupied a site intermediate between the more easterly Falkland
Islands and the more westerly Pensacola Mountains (Curtis and
Storey, 1996). Structural analyses (fold orientation, shortening
directions and strain partitioning) indicate contemporaneous
development of gently plunging foreland-verging folds and
The
associated escape tectonics regime in the orogen is shown by
extensive craton-parallel ductile shear zones and the development
of pull-apart basins in the preserved African foreland (Koras–
Sinclair basins). Other example of indenter-escape tectonic has
been reported in Australia, where the Yilgara craton indented
The balance of evidence suggests that the Gondwanide Orogeny in the northern Patagonia area is due to the transtensive– transpressive deformation. The dextral strike-slip component detected in the northern Patagonia–Sierras Australes, Cape Fold Belt (Africa), and in the Ellsworth Whitmore Mountains block (Antarctica), may reflect margin-parallel strike-slip movements induced by oblique subduction (Cobbold et al., 1991, 1992) beneath the convergent southern margin of Gondwana. volver arriba Reinterpretacion de Ramos (2008) sobre aloctonía de Patagonia y configuración tectónica de Patagonia
volver arriba comparar con la hipotesis de Gregori-Kostadinoff BIBLIOGRAFIA RELACIONADA A LA CONFIGURACIONDE UNIDADES Y A LA ALOCTONIA-AUTOCTONIA DE PATAGONIA
|