
ON SPACES ASSOCIATED WITH PRIMITIVES OF
DISTRIBUTIONS IN ONE-SIDED HARDY SPACES

SHELDY OMBROSI

Abstract. In this paper, we introduce the Hp,+
q,α (w) spaces, where 0 <

p ≤ 1, 1 < q < ∞, α > 0, and for weights w belonging to the class A+
s

defined by E. Sawyer. To define these spaces, we consider a one-sided
version of the maximal function N+

q,α(F, x) defined by A. Calderón. In
the case that w ≡ 1, these spaces have been studied by A. Gatto, J. G.
Jiménez and C. Segovia. We introduce a notion of p-atom in Hp,+

q,α (w),

and we prove that we can express the elements of Hp,+
q,α (w) in term of

series of multiples of p-atoms. On the other side, we prove that the Weyl
fractional integral Pα can be extended to a bounded operator from the
one-sided Hardy space Hp

+ (w) into Hp,+
q,α (w). Moreover, we prove that

this extension, if α is a natural number, is an isomorphism.

1. Notations, definitions and prerequisites

Let f(x) be a Lebesgue measurable function defined on R. The one-sided
Hardy-Littlewood maximal functions M+f(x) and M−f(x) are defined as

M+f(x) = sup
h>0

∫ x+h

x
|f(t)| dt and M−f(x) = sup

h>0

∫ x

x−h
|f(t)| dt.

As usual, a weight w(x) is a measurable and non-negative function. If
E ⊂ R is a Lebesgue measurable set, we denote its w-measure by w(E) =∫
E w(t)dt. A function f(x) belongs to Ls(w), 0 < s ≤ ∞, if ‖f‖Ls(w) =(∫∞
−∞ f(x)sw(x)dx

)1/s
is finite.

A weight w(x) belongs to the class A+
s , 1 ≤ s <∞, defined by E. Sawyer

in [7], if there exists a constant c such that

sup
h>0

(
1
h

∫ x

x−h
w(t)dt

)(
1
h

∫ x+h

x
w(t)−

1
s−1dt

)s−1

≤ c,

for all real number x. We observe that w(x) belongs to the class A+
1 if

M−w(x) ≤ cw(x) for all real number x.
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Given w(x) ∈ A+
s , 1 ≤ s < ∞, we can define two numbers x−∞ and

x+∞, −∞ ≤ x−∞ ≤ x+∞ ≤ ∞, such that

(i) w(x) ≡ 0 in (−∞, x−∞),
(ii) w(x) ≡ ∞ in (x+∞,∞), and
(iii) 0 < w(x) <∞ for almost every x ∈ (x−∞, x+∞).

In order to avoid the non-interesting case x−∞ = x+∞, we assume that there
exists a measurable set E satisfying 0 < w(E) <∞.

Let us fix w ∈ A+
s and let x−∞ be as before. Let Lqloc(x−∞,∞) , 1 < q <

∞, be the space of the real-valued functions f(x) on R that belong locally
to Lq for compact subsets of (x−∞,∞)). We endow Lqloc(x−∞,∞) which the
topology generated for the seminorms

|f |q,I =
(
|I|−1

∫
I
|f(y)|q dy

)1/q

,

where I = [a, b] is an interval in (x+∞,∞) and |I| = b− a.
For f(x) in Lqloc(x−∞,∞), we define a maximal function n+

q,α(f ;x) as

n+
q,α(f ;x) = sup

ρ>0
ρ−α |f |q,[x,x+ρ] ,

where α is a positive real number.
LetN a non negative integer and PN the subspace of Lqloc(x−∞,∞) formed

by all the polynomials of degree at most N. This subspace is of finite dimen-
sion and therefore a closed subspace of Lqloc(x−∞,∞). We denote by EqN the
quotient space of Lqloc(x−∞,∞) by PN . If F ∈ EqN , we define the seminorm

‖F‖q,I = inf
{
|f |q,I : f ∈ F

}
.

The family of all these seminorms induces on EqN the quotient topology.

Given a real number α > 0, we can write it α = N + β, where N is a non
negative integer and 0 < β ≤ 1. Now we fix α > 0 and its decomposition
α = N + β in the previous conditions.

For F in EqN , we define a maximal function N+
q,α(F ;x) as

N+
q,α(F ;x) = inf

{
n+
q,a(f ;x) : f ∈ F

}
.

We say that an element F in EqN belongs to Hp,+
q,α (w), 0 < p ≤ 1, if the

maximal function N+
q,α(F ;x) ∈ Lp(w). The “norm” of F in Hp,+

q,α (w) is
defined as ‖F‖Hp,+

q,α (w) =
∥∥N+

q,α(F ;x)
∥∥
Lp(w)

.

Definition 1.1. We shall say that a class A ∈ EqN is a p-atom in Hp,+
q,α (w) if

there exist a representative a(y) of A and an interval I (non necessarily
bounded) such that

i) I ⊂ (x−∞,∞), w(I) <∞
ii) supp(a) ⊂ I

iii) N+
q,α(A, x) ≤ w(I)−1/p for all x ∈ (x−∞,∞).

We shall say that I is an interval associated to the p-atom A.



Given a bounded function f(y) with support in an interval I = (x−∞, b]
where b is finite and if α > 0 we consider the Weyl fraccional integral

Pαf(x) =
1

Γ(α)

∫ ∞

x
(y − x)α−1 f(y)dy for x ∈ (x−∞,∞) ,

where Γ(α) denotes the Gamma function. It is easy to see that Pαf(x) ∈
L∞loc (x−∞,∞) whenever f ∈ L∞(x−∞, b] . So, if α = N+β where 0 < β ≤ 1
and N is an integer, we denote Pαf the class in EqN of the function Pαf(x).

As usual, C∞
0 (R) denotes the set of all functions with compact support

having derivatives of all orders. We shall denote by D (x−∞,∞) the space
of all functions in C∞

0 (R) with support contained in (x−∞,∞) equipped
with the usual topology and by D′(x−∞,∞) the space of distributions on
(x−∞,∞).

Given a positive integer γ and x ∈ R, we shall say a function ψ in C∞
0 (R),

belongs to the class Φγ(x) if there exists a bounded interval Iψ = [x, b]
containing the support of ψ such that Dγψ satisfies

|Iψ| ‖Dγψ‖∞ ≤ 1.

For f ∈ D′(x−∞,∞) we define f∗+,γ(x) as

f∗+,γ(x) = sup {|〈F,ψ〉| : ψ ∈ Φγ(x)} ,
for all x > x−∞. Let w ∈ A+

s and 0 < p ≤ 1. If γ is a natural number
satisfying (γ + 1) p ≥ s > 1 or (γ + 1) p > 1 if s = 1, then a distribu-
tion f in D′(x−∞,∞) belongs to Hp

+,γ(w) if the “p-norm” ‖f‖Hp
+,γ(w) =(∫∞

x−∞
f∗+,γ(x)

pw(x)dx
)1/p

es finite. These spaces have been defined by L.
de Rosa and C. Segovia in [6]

A function a(x) defined on R is called a p-atom in Hp
γ,+(w) if there exists

an interval I containing the support of a(x), such that
(i) I is contained in (x−∞,∞), w(I) <∞ and ‖a‖∞ ≤ w(I)−1/p

(ii) If the length of I is less than the distance d(x−∞, I) from x−∞ to I,
then ∫

I
a(y)ykdy = 0,

holds for every integer k, 0 ≤ k < γ.

The following theorem is of fundamental importance for the proof of The-
orem 2.3 below.

Theorem 1.2. Let w ∈ A+
s , γ ≥ 1 an integer and 0 < p ≤ 1 such that

(γ + 1) p ≥ s > 1 or (γ + 1) p > 1 if s = 1. Then, if f ∈ Hp
+,γ(w) there

exists a sequence {ai} of p-atoms in Hp
+,γ(w) and a sequence {λi} of real

numbers such that f =
∑
λiai in D′(x−∞,∞), and

c1 ‖F‖pHp
+,γ(w)

≤
∑

|λi|p ≤ c2 ‖F‖pHp
+,γ(w)

,

hold. Furthermore, the intervals associated to the p-atoms ai can be assumed
to be bounded.

For a proof see [6].

Let F ∈ EqN and f ∈ F. Since f belongs to Lqloc(x−∞,∞), DN+1f is
defined in the sense of distributions. On the other hand, since any two
representatives of F differ in a polynomial of degree at most N in (x−∞,∞),



we get that DN+1f is independent of the representative f ∈ F chosen.
Therefore, for F ∈ EqN , we define DN+1F as the distribution DN+1f , where
f is any representative of F.

2. Statement of the main results

With the notation and definitions given in the section 1 we can state the
main results of this paper.

Theorem 2.1 (Descomposition into atoms ). Let w ∈ A+
s and 0 < p ≤ 1,

such that (α+ 1/q) p ≥ s > 1 or (α+ 1/q) p > 1 if s = 1. Then, if F ∈
Hp,+
q,α (w) there exists a sequence {λi} of the number real and a sequence {Ai}

of p-atoms in Hp,+
q,α (w) such that F =

∑
λiAi en EqN (x−∞,∞). Moreover

the series
∑
λiAi converges in Hp,+

q,α (w) and there exist two constants c1 and
c2 such that

(1) c1 ‖F‖pHp,+
q,α (w)

≤
∑

|λi|p ≤ c2 ‖F‖pHp,+
q,α (w)

.

The next corollary proves that is enough to consider bounded intervals in
the Definition 1.1.

Corrolary 2.2. Under the hypotheses of Theorem 2.1 we can take the p-
atoms {Ai} in the decomposition having bounded associated intervals Ii.

The following theorem shows that, in particular, if α is a natural number
the spaces Hp

γ,+(w) and Hp,+
q,α (w) can be identified.

Theorem 2.3. Let w ∈ A+
s , 0 < p ≤ 1, and (α+ 1/q) p ≥ s > 1 or

(α+ 1/q) p > 1 if s = 1. Let γ an integer such that γ ≥ α. Then, Pα

can be extended to a bounded linear operator from Hp
γ,+(w) into Hp,+

q,α (w).
Moreover, if we suppose that α is a natural number this extension is an
isomorphism.

3. Some previous lemmas

The next lemma contains the basic results for A+
s weights and one-sided

maximal functions that we shall need in this paper.

Lemma 3.1.

(1) Let 1 ≤ s1 < s2 <∞. if the weight belongs to the class A+
s1 , then it

also belongs to A+
s2 .

(2) Let 1 < s < ∞. The one-sided Hardy-Littlewood maximal M+ is
bounded on Ls(w) if and only if w belongs to A+

s .
(3) Let w ∈ A+

s , 1 ≤ s <∞. Let a < b be the end points of the bounded
interval I. Then, the interval I− with end points a − |I| and a,
satisfies

w(I−) ≤ cww(I),
where the constant cw does not depend on I.

(4) Given w ∈ A+
s , 1 ≤ s < ∞ for every a ∈ R, the w−measure of the

interval (a,∞) is equal to infinite.



(5) Let 1 < s < ∞. Then, if w ∈ A+
s there exists ε > 0 such that

w ∈ A+
s−ε.

Proofs of parts (2) and (5) may be found in [7] and [5]. Proofs of parts
(1) and (4) are very simple and shall be omitted. Part (3) is an immediate
consequence of (2).

Lemma 3.2. There exists an infinitely differentiable function φ with support
in [−1, 0] , such that

P (x) =
∫
λP (y)φ(λ[x− y])dy,

for all polynomials P (x) of degree less than or equal to N and for every
λ > 0.

The proof is the same as Lemma 2.6 in [2].

Lemma 3.3. Let f1 and f2 be two representatives of an element F in EqN ,
and P (y) = f1(y)− f2(y). There exists a constant ck such that∣∣∣∣∣
(
d

dy

)k
P (y)

∣∣∣∣∣ ≤ ck
(
n+
q,a(f1, x1) + n+

q,a(f2, x2)
)
(|x1 − y|+ |x2 − y|)α−k

holds for every x1, x2 and y in (x−∞,∞).

Proof. we assume that x2 ≥ x1. First, we suppose that y ≥ x2, in this
case, by Lemma 3.2 and proceeding as in the proof of Lemma 1 in [1], we
get

(2)

∣∣∣∣∣
(
d

dy

)k
P (y)

∣∣∣∣∣ ≤ c
(
n+
q,a(f1, x1) + n+

q,a(f2, x2)
)
(y − x1 + y − x2)α−k.

Now, if y ≤ x2, taking into account that Dk(f1(y)− f2(y)) is a polynomial
of degree at most N − k, and by its Taylor’s expansion, we have

(3) Dk(f1(y)− f2(y)) =
N−k∑
j=0

Dk+j
y (f1(y)− f2(y))

∣∣∣
y=x2

(y − x2)j

j!
.

Using (2) with y = x2, we obtain∣∣∣∣Dk+j
y (f1(y)− f2(y))

∣∣∣
y=x2

∣∣∣∣
≤ c

(
n+
q,a(f1, x1) + n+

q,a(f2, x2)
)
|x1 − x2|α−k−j .

Then, ∣∣∣Dk(f1(y)− f2(y))
∣∣∣(4)

≤ C
(
n+
q,a(f1, x1) + n+

q,a(f2, x2)
)
(x2 − x1)α−k

N−k∑
j=0

(
|y − x2|
x2 − x1

)j
Since |x1 − x2| ≤ |y − x1|+ |y − x2| , we obtain that the right side of (4) is
bounded by

CN
(
n+
q,a(f1, x1) + n+

q,a(f2, x2)
)
(x2 − x1)α−k

(
|y − x2|+ |y − x1|

x2 − x1

)N−k
.



From this fact and taking into account that α = N + β, we obtain that∣∣∣Dk(f1(y)− f2(y))
∣∣∣ ≤ c

(
n+
q,a(f1, x1) + n+

q,a(f2, x2)
)
(|y − x1|+ |y − x2|)α−k ,

holds for every y.

Lemma 3.4. Let F belongs to EqN with N+
q,α(F, x0) <∞. Then:

(i) there exists a unique f in F such that n+
q,a(f, x0) <∞ and, therefore,

N+
q,α(F ;x0) = n+

q,a(f, x0).
(ii) For any interval I = [a, b] ⊂ (x−∞,∞) with a ≥ x0, there exists

a constant c depending on x0 and I such that if f is the unique
representative of F given in (i), then

‖F‖q,I ≤ |f |q,I ≤ c n+
q,a(f, x0) = c N+

q,α(F, x0)

The constant c can be chosen independently of x0 provided that x0

varies in a compact set.

Proof. The proof is similar to that of Lemma 3 in [3]. �

Corrolary 3.5. If {Fi} is a sequence of elements in EqN converging to F in
Hp,+
q,α (w) , 0 < p ≤ 1, then {Fi} converges to F in EqN .

Proof. Let an interval I = [a, b] ⊂ (x−∞,∞). Since a > x−∞, d(x−∞, a) =
r > 0. Let n be the first positive integer such that |I|

n < r
2 , and we consider

the interval I−n =
[
a− |I|

n , a
]
. Now, for (ii) of Lemma 3.4

(5) ‖F − Fi‖q,I ≤ CIN
+
q,α(F − Fi;x) for every x in I−n .

On the other hand, since I−n ⊂ (x−∞,∞), w(I−n ) > 0. Then

‖F − Fi‖pq,I ≤ CIw(I−n )−1

∫
I−n

N+
q,α(F−Fi, x)pw(x)dx ≤ cI,w ‖F − Fi‖pHp,+

q,α (w)
,

which proves the corollary.

Lemma 3.6. If {Fi} is a sequence of elements in EqN such that the series∑
iN

+
q,α(Fi, x) is finite a.e. x in (x−∞,∞). Then

(i) The series
∑

i Fi converges in EqN to an element F and

(6) N+
q,α(F ;x) ≤

∑
i

N+
q,α(Fi, x) for all x ∈ (x−∞,∞).

(ii) Let x0 be a point where
∑

iN
+
q,α(Fi;x0) is finite. If fi is the unique

representative of Fi satisfying n+
q,a(fi;x0) = N+

q,α(Fi;x0), then
∑

i fi
converges in Lqloc(x−∞,∞) to a function f that is the unique repre-
sentative of F satisfying n+

q,a(f ;x0) = N+
q,α(F ;x0).

Proof. First we prove (ii). Let x0 be a point where
∑

iN
+
q,α(Fi;x0) is

finite. Then, by Lemma 3.4, for each i there exists a representative fi of Fi
satisfying n+

q,a(fi;x0) = N+
q,α(Fi;x0) < ∞. Let x ∈ (x−∞,∞) another point

such that
∑

iN
+
q,α(Fi;x) is finite, then for each i there exists a polynomial

Pi(x, y) of degree at most N such that n+
q,a(fi(y)−Pi(x, y);x) = N+

q,α(Fi;x).
Using Lemma 3.3, we get

(7) |Pi(x, y)| ≤
(
N+
q,α(Fi;x0) +N+

q,α(Fi;x)
)
(|y − x0|+ |y − x|)α .



Let us fix an interval I = [a, b] ⊂ (x−∞,∞) and we consider x1 ≤ a such
that

∑
iN

+
q,α(Fi;x1) <∞. Then, by (ii) of Lemma 3.4 and (7) , we obtain

|fi|q,I ≤ |fi − Pi(x1, .)|q,I + |Pi(x1, .)|q,I
≤ CI,x1,x0

(
N+
q,α(Fi;x0) +N+

q,α(Fi;x1)
)
.

Thus∣∣∣∣∣
k∑
i=1

fi −
m∑
i=1

fi

∣∣∣∣∣
q,I

≤
k∑

i=m+1

|fi|q,I ≤ CI,x1,x0

k∑
i=m+1

(
N+
q,α(Fi;x0) +N+

q,α(Fi;x1)
)
,

which proves that there exists f en Lqloc(x−∞,∞) such that
∞∑
i=1

fi = f in

this space. Let us denote by F the class of f in EqN . Since

(8) n+
q,α(f ;x0) ≤

∑
i

n+
q,α(fi;x0) =

∑
i

N+
q,α(Fi;x0) <∞,

we have that f is the unique representative of F satisfying N+
q,α(f ;x0) =

N+
q,α(F ;x0).
Now, we will prove (i). As consequence of inequality∥∥∥∥∥

K∑
i=1

Fi − F

∥∥∥∥∥
q,I

≤

∣∣∣∣∣
K∑
i=1

fi − f

∣∣∣∣∣
q,I

,

we have F =
∞∑
i=1

Fi in EqN . Moreover, from (8) we obtain

N+
q,α(F ;x0) ≤

∑
i

N+
q,α(Fi;x0).

This conclude the proof.

Corrolary 3.7. The space Hp,+
q,α (w) , 0 < p ≤ 1, is complete.

Taking into account Lemma 3.6, the proof of this result is similar to that
of Corollary 2 in [3].

Lemma 3.8. The maximal function N+
q,a(F, x) associated with a class F in

EqN is lower semicontinuous.

See Lemma 6 in [1].

Lemma 3.9. Let f a representative of F in EqN . We suppose that N+
q,α(F ;x)

is finite and we denote by P (x, y) the unique polynomial of degree almost N
such that n+

q,α(f(y) − P (x, y);x) = N+
q,α(F ;x). Then f(x) = P (x, x) for

almost every x such that N+
q,α(F ;x) is finite.

See Lemma 2 in [1].

Lemma 3.10. Let F in EqN . We suppose that N+
q,α(F, x) ≤ t for every x

belonging to a set E ⊂ (x−∞,∞) . Let f a representative of F and P (x, y)
the unique polynomial in PN such that N+

q,α(F ;x) = n+
q,α(f(y)−P (y, x);x).

For each x in E we define Ak(x) = Dk
yP (x, y)

∣∣
y=x

. Then,

(9)
∣∣∣∣Ak(x)−∑ 1

i!
(x− x)iAk+i(x)

∣∣∣∣ ≤ c t |x− x|α−k ,



for all x and x in E. Furthermore, AN satisfies a Lipschitz-β condition
on E with constant ct (we recall that α = N + β, where 0 < β ≤ 1) and if
0 ≤ k < N, Ak(x) satisfies a uniform Lipschitz-1 condition on every bounded
subset of E.

By Lemma 3.2 and proceeding as in the proof of Lemma 5 in [1] we obtain
the proof of this lemma.

The next results will be used in the proof of Theorem 2.3.

Lemma 3.11. Let f ∈ L∞, with supp(f) ⊂ I = (x−∞, b] where b is finite.

Then

(10) N+
q,α(Pαf ;x) ≤ C ‖f‖∞ for every x ∈ (x−∞,∞) ,

where C does not depend on f.

Proof. For x ∈ (x−∞,∞) and z > 0, we define

R(x, z) =(11)

1
Γ(α)

[∫ ∞

x+z
(y − x− z)α−1 f(y)dy −

∫ ∞

x

(
N∑
k=0

ck,α (y − x)α−1−k zk

)
f(y)dy

]
,

where
(∑N

k=0 ck,α (y − x)α−1−k zk
)

is the Taylor’s expansion of order N of

the function (y − x− z)α−1. Let ρ > 0. We will estimate ρ−α |R(x, .)|q,[0,ρ].
We recall that α = N + β, and we consider first the case 0 < β < 1. Since

R(x, z) =
1

Γ(α)

∫ x+2z

x+z
(y − x− z)α−1 f(y)dy

+
1

Γ(α)

∫ ∞

x+2z

[
(y − x− z)α−1 −

N∑
k=0

ck,α (y − x)N−k zk
]
f(y)dy

− 1
Γ(α)

N∑
k=0

ck,α

∫ x+2z

x
(y − x)α−1−k f(y)dy zk = A1 +A2 −A3.(12)

For A2, by the mean value Theorem and since β < 1, we obtain

|A2| ≤ C ‖f‖∞
∫ ∞

x+2z
(y − x)β−2 dy zN+1 ≤ C ‖f‖∞ zα,

For A3, we have
(13)

|A3| ≤ C ‖f‖∞
N∑
k=0

∫ x+2z

x
(y − x)α−1−k dy zk ≤ C ‖f‖∞

N∑
k=0

zα−kzk ≤ C ‖f‖∞ zα.

In the same way we obtain

|A1| ≤ C ‖f‖∞ zα.

Then, for β < 1, we have that

(14) |R(x, z)| ≤ C ‖f‖∞ zα,



however (14) also holds for β = 1. In fact, since (y − x− z)N is a polynomial
of degree N, it coincides with its Taylor’s expansion of order N , so we have
that

R(x, z) =

1
Γ(N + 1)

[∫ ∞

x+z
(y − x− z)N f(y)dy −

∫ ∞

x

(
N∑
k=0

ck,N (y − x)N−k f(y) zk
)
dy

]

= − 1
Γ(N + 1)

N∑
k=0

ck,N

∫ x+z

x
(y − x)N−k f(y)dy zk.

Then , in the same way that we obtained (13), we can prove that (14) also
holds in this case.

As consequence of (14) we obtain

ρ−α |R(x, .)|q,[0,ρ] = ρ−α
(

1
ρ

∫ ρ

0
|R(x, z)|q dz

)1/q

≤ C ‖f‖∞ ρ−α
(

1
ρ

∫ ρ

0
zαqdz

)1/q

≤ C ‖f‖∞ ,

which implies (10).

Lemma 3.12. Let a(y) a p-atom in Hp
+,γ(w) with vanishing moments up

to the order N. Furthermore, we suppose that supp(a) ⊂ I = [x0, b] and
‖a‖∞ ≤ w(I)−1/p. Then, for every natural number k and if x ∈ (x−∞,∞)
∩{|x− x0| > 2 |I|} holds that∣∣∣DkPαa(x)

∣∣∣ ≤ Ck w(I)−1/p |I|N+2

|x|2+k−β

Proof. Without loss of generality, we can suppose that I = [0, b]. As
supp(a) ⊂ I, the result is trivial if x > 2b, then we consider x < −2b. In
this case Pαa(x) = 1

Γ(α)

∫ b
0 (x− y)α−1 a(y)dy and

DkPαa(x) = ck,α

∫ b

0
(y − x)α−1−k a(y)dy.

Then, taking into account that a(y) has vanishing moments up to order N ,
x < −2b, and recalling that α = N + β, we have∣∣∣DkPαa(x)

∣∣∣ =

∣∣∣∣∣ck,α
∫ b

0

(
(y − x)α−1−k −

N∑
i=0

cα,i (−x)α−1−k−i yi

)
a(y)dy

∣∣∣∣∣
≤ C |x|α−k−N−2

∫ b

0
|a(y)| |y|N+1 dy ≤ Cw(I)−1/p bN+2

|x|2+k−β
.

4. Proof of the results

The following lemma states some properties of a one-sided partition of
unity that can be found in [6].

Lemma 4.1 (a one-sided partition of unity). Let a < b and we consider the
interval I = (a, b). Then there exists a sequence {ηj}∞j=1 of C∞

0 functions
satisfying the following conditions



1) 0 ≤ ηj(x) ≤ 1 and
∑

j ηj(x)χ(a,b)(x) = χ(a,b)(x).
2) For each positive integer j, if Ij = [a+ 2−j(b− a), a+ 2−j+2(b− a)]

supp(ηj) ⊂ Ij . If we denote rj = (b−a)
2j , then for every x ∈ Ij rj ≤

x− a ≤ crj , where c does not depend on j.
3) If Îj =

(
a+ 2−j−1(b− a),min{a+ 2−j+2(b− a), b}

)
, ∪j Îj = I. Fur-

thermore, the number of interval Îj that intersect to other interval
Îk does not exceed two.

4) If k is an integer, k ≥ 0, we have∣∣∣Dkηj(x)
∣∣∣ ≤ Ckr

−k
j ,

where Ck does not depend on j.

Let F ∈ Hp,+
q.α (w) . Given t > 0, we consider

Ω = Ωt = {x ∈ (x−∞,∞) : N+
q,α(F, x) > t},

since N+
q,α(F, x) ∈ Lp(w), w(Ω) < ∞ and by Lemma 3.8 this is an open

subset of (x−∞,∞). Then Ω =
⋃∞
i=1 Ii, where intervals Ii = (ai, bi) are the

connected components of Ω. We observe that bi <∞, since w (Ii) ≤ w (Ω) <
∞ (see part (3) of Lemma 3.1). If there is an interval Ii with ai = x−∞,
then we will assume that i = 1. If not, we shall assume that I1 = ∅. Let f
belonging We define

(15) θ1(y) = χI1(y)(f(y)− P (b1, y)),

where P (b1, y) ∈ PN and N+
q,α(F, b1) = nq,α (f(y)− P (b1, y)) .

On the other hand, for each i > 1, Let {ηi,j}i>1,j≥1 be the partition
of unity as Lemma 4.1 associated with each interval Ii = (ai, bi) and we
denote Ii,j and Îi,j that intervals Ij and Îj of the same lemma. We de-
fine xi,j = bi if j = 1, 2 and xi,j = ai for j > 2. Let C = (x−∞,∞) −
Ω. We observe that each point xi,j satisfies d(Îi,j , C) = d(Îi,j , xi,j) where
Îi,j =

(
ai + 2−j−1(bi − ai),min

{
ai + 2−j+2(bi − ai), bi

})
. Furthermore, as

the points xi,j belong to C, we have that N+
q,α(F, xi,j) ≤ t. We denote

P (xi,j , y) the polynomial satisfying N+
q,α(F, xi,j) = n+

q,α (f(y)− P (xi,j , y)).
Now, for each i > 1 and j ≥ 1, we define

(16) θi,j(y) = ηi,j(y)χIi(y) (f(y)− P (xi,j , y)) .

The functions θi,j and θ1 belong to Lqloc(x−∞,∞). Let us denote by Θi,j

and Θ1 the class of θi,j and θ1 in EqN respectively.
For the following two lemmas we will use the previous notation.

Lemma 4.2. Let F ∈ Hp,+
q,α (w) , and f ∈ F . If g(y) is defined in (x−∞,∞)

as

g(y) =
{ ∑∞

i=2

∑∞
j=1 ηi,j(y)χIi(y)P (xi,j , y) + χI1(y)P (b1, y)) if y ∈ Ω,

f(y) if y /∈ Ω,

and G denote its class in EqN , then there exists a constant C such that

N+
q,α(G, x) ≤ Ct for all x ∈ (x−∞,∞).



Proof. It will be enough to prove that the function g agrees almost
everywhere with a function having derivatives continuous up to order N
and its derivative of order N satisfies a Lipschitz-β condition with constant
ct on (x−∞,∞). The function g(y) is infinitely differentiable on Ω, and if
x ∈ Ω, we have that

Dkg(x) =(17)
∞∑
i=2

∞∑
j=1

k∑
h=0

k!
h!k − h!

Dtηi,j(x) Dk−h
y P (xi,j , y)

∣∣∣
y=x

+ χI1(x) D
k−h
y P (b1, y)

∣∣∣
y=x

,

Let x̃ ∈ C. By condition (3) of Lemma 4.1 we have, for x in Ω, that

Dk
yP (x̃, y)

∣∣∣
y=x

=(18)

∞∑
i=2

∞∑
j=1

k∑
h=0

k!
h!(k − h)!

Dhηi,j(x) Dk−h
y P (x̃, y)

∣∣∣
y=x

+ χI1(x) D
k
yP (x̃, y)

∣∣∣
y=x

Let x ∈ C = (x−∞,∞)−Ω, x ∈ Ω and we denote x̃ the point in C closest to
x. From (17) and (18), we obtain for x ∈ Ω that

Dkg(x)− Dk
yP (x, y)

∣∣∣
y=x

=(19)

∞∑
i=2

∞∑
j=1

k∑
h=0

k!
h!(k − h)!

Dhηi,j(x)
[
Dk−h
y P (xi,j , y)

∣∣∣
y=x

− Dk−h
y P (x̃, y)

∣∣∣
y=x

]

+χI1(x)
[
Dk
yP (b1, y)

∣∣∣
y=x

− Dk
yP (x̃, y)

∣∣∣
y=x

]
+ Dk

yP (x̃, y)
∣∣∣
y=x

− Dk
yP (x, y)

∣∣∣
y=x

.

We suppose that x ∈ Îi,j =
(
ai + 2−j(bi − ai),min

{
ai + 2−j+2(bi − ai), bi

})
for some i > 1 and j ≥ 1. We denote ri,j = bi−ai

2j = |Ii|
2j . Since xi,1 = xi,2 = bi

and xi,j = ai for j > 2, and taking into account (2) of Lemma 4.1, we have
that

|x̃− x| ≤ |xi,j − x| ≤ cri,j , and

|x̃− x| ≤ |xi,j − x| ≤ c |x− x| .

By Lemma 3.3 and since xi,j , x̃, and x belong to C, we obtain∣∣∣∣ Dk−h
y P (xi,j , y)

∣∣∣
y=x

− Dk−h
y P (x̃, y)

∣∣∣
y=x

∣∣∣∣ ≤ ct |x− x|α−k rhi,j , and

(20)
∣∣∣∣Dk

yP (x̃, y)
∣∣∣
y=x

− Dk
yP (x, y)

∣∣∣
y=x

∣∣∣∣ ≤ c t (|x− x|)α−k .

Applying These estimates in (19), and using condition (4) of Lemma 4.1, we
have that

(21)
∣∣∣∣Dkg(x)− Dk

yP (x, y)
∣∣∣
y=x

∣∣∣∣ ≤ ct |x− x|α−k .

If x ∈ I1 = (x−∞, b1), we have that x̃ = b1. Since in the right member of
(19) all the terms are cancelled except the last one, by (20) we have that
(21) also holds in this case.



Now, we take k = N + 1. Assuming that x ∈ Ii for i > 1, from (19), we
obtain

DN+1g(x) =(22)
∞∑
i=2

∞∑
j=1

N+1∑
h=1

N + 1!
h!(N + 1− h)!

Dhηi,j(x)
[
DN+1−h
y (P (xi,j , y)− P (x̃, y))

∣∣∣
y=x

]
.

Since x ∈ Ii where i > 1, then x belongs to Îi,j0 for some j0 ≥ 1. We
suppose that j0 > 5. Then Dhηi,j(x) = 0 for j = 1, 2, 3. Moreover, for
j > 3, x̃ = xi,j = ai, then DN+1g(x) is vanished. On the other hand,
if j0 ≤ 5, then x /∈ Îi,j for j > 7. Furthermore if j ≤ 7, we have that
ri,j ≥ 2−8 |Ii| . From the last estimate and by condition 4) of Lemma 4.1, we
obtain ∣∣∣Dhηi,j(x)

∣∣∣ ≤ c |Ii|−h .
Now, applying Lemma 3.3 and recalling that α = N + β, we obtain∣∣∣∣ DN+1−h

y P (xi,j , y)
∣∣∣
y=x

− DN+1−h
y P (x̃, y)

∣∣∣
y=x

∣∣∣∣ ≤ ct rβ−1+h
i,j ≤ ct |Ii|β−1+h .

From (22) and taking into account these estimates, we obtain

(23)
∣∣DN+1g(x)

∣∣ ≤ c t |Ii|β−1 for every x ∈ Ii.

If x ∈ I1, g(x) = P (b1, x), and therefore in this case DN+1g(x) = 0 and (23)
also holds. Now, for each k = 0, 1, 2, ...N + 1, we define the function Bk in
(x−∞,∞) as

Bk(x) =
{
Dkg(x) si x ∈ Ω
Ak(x) si x ∈ C ,

where Ak(x) = Dk
yP (x, y)

∣∣
y=x

is the function of Lemma 3.10. Then, if
x ∈ Ω, and x ∈ C the inequality (21) can be rewritten as

(24)

∣∣∣∣∣Bk(x)−
N−k∑
h=0

Bk+h(x)
(x− x)h

h!

∣∣∣∣∣ ≤ c t |x− x|α−k ,

para 0 ≤ k ≤ N . Now since N+
q,α (F.x) ≤ t in C, Lemma 3.10 shows that

this inequality holds also for x ∈ C. This shows that Bk(x) is continuous for
0 ≤ k ≤ N, and for x in C. Furthermore, for 1 ≤ k ≤ N, Bk(x) is continuous
in (x−∞,∞) since Bk(x) = Dkg(x) in Ω. By (24) with k = N we obtain
that BN satisfies

(25) |BN (x)−BN (y)| ≤ c t |x− y|β ,

for every x and y ∈ (x−∞,∞) and one of them in C. Now we will prove that
(25) also holds without every x and y in (x−∞,∞). We consider x1 < x2 in
Ω, then x1 ∈ Ii1 , and x2 ∈ Ii2 = (ai2 , bi2) . If i1 6= i2, we have

(26) |x1 − ai2 |
β + |x2 − ai2 |

β ≤ 2 |x2 − x1|β .
Taking into account that ai2 ∈ C, using (25) and (26) , we obtain

|BN (x1)−BN (x2)| ≤ |BN (x1)−BN (ai2)|+ |BN (x1)−BN (ai2)|

≤ ct
[
|x1 − ai2 |

β + |x2 − ai2 |
β
]

(27)

≤ ct |x1 − x2|β .



On the other hand, if i2 = i1, i.e., x1 and x2 in Ii1 . Then, taking into
account that BN+1(x) = DN+1g(x) for x ∈ Ω, (23) and the inequality
|x1 − x2| ≤ |Ii1 | , we have

|BN (x1)−BN (x2)| ≤ |BN+1(ζ)| |x1 − x2| ≤ ct
|x1 − x2|
|Ii1 |

1−β

≤ ct |x1 − x2|β .(28)

As consequence (25) , (27) and (28) , we obtain that BN satisfies a Lipschitz-
β condition in (x−∞,∞) with constant ct. The inequality (24) shows that
DkB0(x) = Bk(x) in C, identity which also holds in Ω. Furthermore, Lemma
3.9 permits us assert that B0(x) = A0(x) = P (x, x) = g(x) almost every-
where in C. Thus we conclude that g(x) coincides almost everywhere in
(x−∞,∞) with B0(x) which has continuous derivatives up to order N in
(x−∞,∞), and its derivative of order N satisfies a Lipschitz-β condition
with constant ct.

With the notation given in (16) we have the following result.

Lemma 4.3 (one-sided Calderón-Zygmund-type). Let F ∈ Hp,+
q,α (w) and

w ∈ A+
s , where (α+ 1/q) p ≥ s > 1 or (α+ 1/q) p > 1 if s = 1. Then, the

following conditions are satisfied:

(i) If x ∈ Îi,j =
(
ai + 2−j−1(bi − ai),min

{
ai + 2−j+2(bi − ai), bi

})
N+
q,α(Θi,j , x) ≤ CN+

q,α(F, x), and

N+
q,α(Θ1, x) ≤ CN+

q,α(F, x)χI1(x) for all x ∈ (x−∞,∞)

(ii) If x > x−∞ and x /∈ Îi,j

N+
q,α(Θi,j , x) ≤ ct

[
M+χ

Îi,j
(x)
]α+1/q

.

(iii) The series
∑

i,j N
+
q,α(Θi,j ;x) + N+

q,α(Θ1;x) is pointwise convergent
for almost every x in (x−∞,∞). Moreover,∫ ∑

i>1,j

N+
q,α(Θi,j ;x) +N+

q,α(Θ1;x)

p

w(x)dx ≤ c

∫
Ω
N+
q,α(F, x) pw(x)dx.

(iv) The series
∑

i>1

∑
j Θi,j + Θ1 = Θ converges in EqN , and for almost

every x in (x−∞,∞),

(29) N+
q,α(Θ;x) ≤

∑
i>1,j

N+
q,α(Θi,j ;x) +N+

q,α(Θ1;x).

(v) Furthermore,∫
N+
q,α(Θ, x) pw(x)dx ≤ c

∫
Ω
N+
q,α(F, x) pw(x)dx.

(vi) If G = F −Θ, N+
q,α(G, x) ≤ ct.

Proof. The proof follows the lines of the argument in Lemma 10 of
Gatto-Jiménez-Segovia [3]. Let us prove (i). First, we consider i > 1, and
j > 1 and x ∈ Îi,j . We can assume that N+

q,α(F ;x) < ∞, otherwise, there
is nothing to prove. Let P (x, y) be the polynomial of degree at most N



satisfying nq,a(f(y) − P (x, y);x) = N+
q,α(F ;x). Since supp(ηi,j) ⊂ Ii,j , we

have for j > 1
θi,j(y) = ηi,j(y) (f(y)− P (xi,j , y))

We define the polynomial

Qi,j(x, y) =
N∑
k=0

Dk
y [ηi,j(y)(P (x, y)− P (xi,j , y))]

∣∣∣
y=x

(y − x)k

k!
.

Let us estimate ρ−α |θi,j(.)−Qi,j(x, .)|q,[x,x+ρ] . We have that

Qi,j(x, y)(30)

=
N∑
k=0

[
Dk
y(P (x, y)− P (xi,j , y))

∣∣∣
y=x

(y − x)k

k!
×

(
N−k∑
h=0

Dhηi,j(x)
(y − x)h

h!

)]
Let ri,j = bi−ai

2j and we consider y ∈ [x, x + ρ]. Then, taking into account
that xi,j = bi if j = 2 and xi,j = ai if j > 2, and by (2) of Lemma 4.1

|xi,j − x| ≤ 4ri,j , and

|y − x|+ |y − xi,j | ≤ 2 |y − x|+ |xi,j − x| ≤ 4(ρ+ ri,j)
Since N+

q,α(F, xi,j) ≤ t < N+
q,α(F ;x) and by Lemma 3.3, we get that

(31)
∣∣∣Dk

y(P (x, y)− P (xi,j , y))
∣∣∣ ≤ C N+

q,α(F ;x) (|y − x|+ |xi,j − x|)α−k

Assume first that ρ ≥ ri,j . In this case, we have

|θi,j(y)−Qi,j(x, y)| = |ηi,j(y) (f(y)− P (xi,j , y))−Qi,j(x, y)|(32)

≤ ηi,j(y) |f(y)− P (x, y)|+ ηi,j(y) |(P (x, y)− P (xi,j , y)|+ |Qi,j(x, y)|
For the second term of the right hand side of this inequality, we obtain

(33) ηi,j(y) |(P (x, y)− P (xi,j , y)| ≤ c N+
q,α(F ;x)ρα.

Now, let us estimate |Qi,j(x, y)| . From (31) with y = x, we have∣∣∣∣Dk
y(P (x, y)− P (xi,j , y))

∣∣∣
y=x

∣∣∣∣ ≤ cN+
q,α(F ;x)rα−ki,j .

Then, from (30), by condition (4) of Lemma 4.1, and recalling that ρ ≥ ri,j
and α = N + β it follows that

|Qi,j(x, y)| ≤ c
N∑
k=0

N+
q,α(F ;x)rα−ki,j ρk

(
N−k∑
h=0

cr−hi,j ρ
h

)
(34)

≤ cN+
q,α(F ;x) ρα.

Integrating (32) over [x, x+ ρ] and using the estimates (33) and (34), we
get for ρ ≥ ri,j

ρ−α |θi,j(.)−Qi,j(x, .)|q,[x,x+ρ](35)

≤ ρ−α |f(y)− P (x, y)|q,[x,x+ρ] + c N+
q,α(F ;x)

Now we consider the case ρ < ri,j . We rewrite Qi,j(x, y) as

Qi,j(x, y)

=
N∑
k=0

[
Dkηi,j(x)

(y − x)k

k!
×

(
N−k∑
h=0

Dh
y (P (x, y)− P (xi,j , y))

∣∣∣
y=x

(y − x)h

h!

)]
.



Adding and subtracting the expression

ηi,j(y)P (x, y) +
N∑
k=0

Dkηi,j(x)
(y − x)k

k!
(P (x, y)− P (xi,j , y))

to Qi,j(x, y) we obtain

|θi,j(y)−Qi,j(x, y)| ≤ ηi,j(y) |f(y)− P (x, y)|

+

∣∣∣∣∣
[
ηi,j(y)−

N∑
k=0

Dkηi,j(x)
(y − x)k

k!

]∣∣∣∣∣ |(P (x, y)− P (xi,j , y)|

+

∣∣∣∣∣
N∑
k=0

[
Dkηi,j(x)

(y − x)k

k!

]
×(36)[

(P (x, y)− P (xi,j , y)−

(
N−k∑
h=0

Dh
y (P (x, y)− P (xi,j , y))

∣∣∣
y=x

(y − x)h

h!

)]∣∣∣∣∣
≤ |f(y)− P (x, y)|+ S1 + S2.

If y ∈ [x, x + ρ], and considering condition (4) of Lemma 4.1 and (31),
recalling that α = N + β and ρ < ri,j , we get

S1 =
∣∣∣∣DN+1ηi,j(ξ)

(y − x)N+1

N + 1!

∣∣∣∣ |(P (x, y)− P (xi,j , y)|

≤ c r
−(N+1)
i,j ρN+1N+

q,α(F ;x) rαi,j ≤ cN+
q,α(F ;x)ρα

As for S2, similar arguments show that

S2 =

∣∣∣∣∣
N∑
k=1

[
Dkηi,j(x)

(y − x)k

k!

] [
DN+1−k
y (P (x, y)− P (xi,j , y))

∣∣∣
y=ξ

(y − x)N+1−k

k!

]∣∣∣∣∣
≤ c

N∑
k=1

r−ki,j ρ
kN+

q,α(F ;x) (ri,j + ρ)k+β−1ρN+1−k ≤ cN+
q,α(F ;x)ρα.

Integrating (36) and by the estimates just obtained we get that (35) also
holds for ρ < ri,j . This shows that

N+
q,α(Θi,j , x) ≤ c N+

q,α(F ;x).

Now we consider the classes Θi,1 with i > 1 and x ∈ Îi,1 = (ai + 2−2(bi −
ai), bi). We can express θi,1(y) as following way

θi,1(y) = ηi,1(y)χIi(y) (f(y)− P (bi, y))

= ηi,1(y) (f(y)− P (bi, y))− ηi,1(y)χ[b,∞)(y) (f(y)− P (bi, y))

= θ1
i,1(y)− θ2

i,1(y).(37)

We denote Θ1
i,1 and Θ2

i,1 the classes of θ1
i,1(y) and θ2

i,1(y) respectively.
For the class Θ1

i,1, arguing as before we get

N+
q,α(Θ1

i,1, x) ≤ cN+
q,α(F, x),

for all x ∈ Îi,1.Now we consider the class Θ2
i,1. Let us estimate

∫ x+ρ
x

∣∣∣θ2
i,1(y)

∣∣∣q dy.
Since supp(θ2

i,1) ⊂ [bi, ai + 2(bi − ai)], we can assume that x+ ρ > bi, if not



the integral that we want to estimate is equal to zero. By (1) of Lemma 4.1,
and since x ≤ bi, we have∫ x+ρ

x

∣∣θ2
i,1(y)

∣∣q dy ≤ ∫ bi+ρ

bi

|f(y)− P (bi, y)|q dy ≤ N+
q,α(F, bi)q ραq+1,

and since N+
q,α(F, bi) ≤ t < N+

q,α(F ;x) we obtain N+
q,α(Θ2

i,1, x) ≤ N+
q,α(F ;x).

Then, it follows that

N+
q,α(Θi,1, x) ≤ cN+

q,α(F ;x).

To finish the proof of (i) let us estimate N+
q,α(Θ1, x). Let x ∈ I1 = (x−∞, b1) .

We define the polynomial Q1(x, y) = P (x, y) − P (b1, y). Let us estimate
ρ−α |θ1(.)−Q1(x, .)|q,[x,x+ρ] . We assume first that x+ ρ ≤ b1. In this case,
by (15) we have

ρ−α |θ1(.)−Q1(x, .)|q,[x,x+ρ] =
1

ρα+1/q

(∫ x+ρ

x
|f(y)− P (x, y)|q dy

)1/q

≤ N+
q,α(F ;x).

If x+ ρ > b1, using Lemma 3.3 we obtain that

ρ−α |θ1(.)−Q1(x, .)|q,[x,x+ρ] ≤ N+
q,α(F ;x) + ρ−α−1/q(

∫ x+ρ

b1

|P (x, y)− P (b1, y)|q dy)1/q

≤ c(N+
q,α(F ;x) +N+

q,α(F, b1)) ≤ cN+
q,α(F ;x),

Then, N+
q,α(Θ1, x) ≤ cN+

q,α(F ;x)χI1(x) if x ∈ I1. Moreover, since θ1(y) = 0
if y > b1, we have that N+

q,α(Θ1, x) = 0 if x ≥ b1.
Let us prove condition (ii). Again, we work first with the classes Θi,j

for i > 1 and j > 1. Let x > x−∞, and x /∈ Îi,j . We will estimate
ρ−α |θi,j |q,[x,x+ρ]. If x−∞ < x < ai + 2−j−1(bi − ai), since supp(θi,j) ⊂ Ii,j ,

we have that |θi,j |q,[x,x+ρ] is equal to zero unless [x, x+ ρ] ∩ Ii,j 6= ∅. Then,

(38) ρ > ai + 2−j(bi − ai)− x.

On the other hand, since supp(ηi,j) ⊂ Ii,j ⊂ [ai, ai + 4ri,j ], we get,

ρ−α |θi,j |q,[x,x+ρ] = ρ−α−1/q(
∫ x+ρ

x
ηi,j(y)q |f(y)− P (xi,j , y)|q dy)1/q(39)

≤ 1
ρα

|f(.)− P (ai, .)|q,[ai,ai+4ri,j ]
+

1
ρα+1/q

(
∫ ai+4ri,j

ai

|P (xi,j , y)− P (ai, y)|q dy)1/q.

Since xi,j = ai for j > 2, the second summand of the last line is null except
in the case j = 2. In this case xi,2 = bi and using Lemma 3.3, we obtain(∫ ai+4ri,j

ai

|P (xi,j , y)− P (ai, y)|q dy
)1/q

≤ c t r
α+1/q
i,j .

Therefore, substituting in (39) and by (38), we get

ρ−α |θi,j |q,[x,x+ρ] ≤ ct

(
ri,j

ai + 2−j(bi − ai)− x

)α+1/q

≤ ct
[
M+χÎi,j (x)

]α+1/q
.

This implies that

(40) N+
q,α(Θi,j ;x) ≤ ct

[
M+χÎi,j (x)

]α+1/q
,



for x−∞ < x ≤ ai + 2−j−1(bi − ai). Since θi,j(y) is equal to zero for y >
ai + 2−j+2(bi − ai), we have that (40) also holds for x > ai + 2−j+2(bi − ai).
By (37) and using a similar argument we obtain (ii) for the classes Θi,1.

As for condition (iii). Since w ∈ A+
(α+1/q)p and (α+ 1/q) p > 1 and

taking into account (i), (ii) and (2) of Lemma 3.1, we have∫ ∞

x−∞

 ∞∑
i=2

∞∑
j=1

N+
q,α(Θi,j ;x) +N+

q,α(Θ1;x)

p

w(x)dx

≤ c

∫
I1

N+
q,α(F ;x)pw(x)dx+ c

∞∑
i=2

∞∑
j=1

∫
Îi,j

N+
q,α(F ;x)pw(x)dx

+
∞∑
i=2

∞∑
j=1

ctp
∫

(x−∞,∞)

[
M+χÎi,1(x)

](α+1/q)p
w(x)dx

≤ c

∫
Ω
N+
q,α(F ;x)pw(x)dx+ ctpw(Ω) ≤ c

∫
Ω
N+
q,α(F ;x)pw(x)dx.

Condition (iv) is a consequence of condition (iii) and Lemma 3.6. As for
condition (v), it follows from conditions (iii) and (iv).

Now we will prove (vi). We consider a point x0 /∈ Ω, such that∑
i>1,j

N+
q,α(Θi,j ;x0) +N+

q,α(Θ1;x0) <∞.

Since θi,j(y) and θ1(y) are the representatives satisfying N+
q,α(Θi,j ;x0) =

n+
q,α(θi,j ;x0) and N+

q,α(Θ1;x0) = n+
q,α(θ1;x0), by Lemma 3.6,

θ(y) =
∞∑
i=2

∞∑
j=1

ηi,j(y)χIi(y) (f(y)− P (xi,j , y)) + χI1(y)(f(y)− P (b1, y))

is a representative of Θ and therefore

g(y) =
{ ∑∞

i=2

∑∞
j=1 ηi,j(y)χIi(y)P (xi,j , y) + χI1(y)P (b1, y)) if x ∈ Ω,

f(y) if x /∈ Ω,

is a representative of G = F −Θ. Thus, by Lemma 4.2 N+
q,α(G;x) ≤ ct.

Proof of Theorem 2.1. The method that we will use to prove the the-
orem it was developed in [4]. Proceedings as in [4] we can show, as a conse-
quence of Lemma 4.3, that ifH is an element of EqN satisfyingN+

q,α(H;x) ≤ 1
and

∫
N+
q,α(H;x)rw(x)dx <∞, for some 0 < r < p ≤ 1, (α+ 1/q)r > 1 and

such that w ∈ A+
(α+1/q)r then there exists a numerical sequence {λi} and a

sequence of p-atoms {Ai} of Hp,+
q,α (w) such that H =

∑
λiAi in Hp,+

q,α (w).
Moreover,

∑
|λi|p ≤

∫
N+
q,α(H;x)rw(x)dx.

From this fact, the proof of theorem can be obtained following the same
lines of the proof of the Theorem 4.3 of [4].

In order to prove Corollary 2.2 we will need the following lemma.

Lemma 4.4. Sea I = (−∞, b). There exists a sequence {νj}∞j=−∞of C∞
0

functions satisfying the following conditions

1) 0 ≤ νj(x) ≤ 1 and
∑

j νj(x) = χ(−∞,b)(x).



2) For each integer j, if we denote Ij = [−2−j + b,−2−j−2 + b] then
supp(νj) ⊂ Ij . Let rj = 1

2j , then for every x ∈ Ij , rj ≤ b− x ≤ crj .
3) the number of interval Ij that intersect to other interval Ik does not

exceed two.
4) If k is an integer, k ≥ 0, we have∣∣∣Dkνj(x)

∣∣∣ ≤ Ckr
−k
j

where Ck does not depend on j.
See [6], pag. 167

Lemma 4.5. Given a p-atom A in Hp,+
q,α (w) there exists a numerical se-

quence {µk}, and a sequence of p-atoms {Ak} in Hp,+
q,α (w) with bounded

associated intervals, such that

(41) A =
∑

µkAk in EqN and
∑

|µk|p ≤ C,

where C is a finite constant not depending of A.

Proof. If there exists a bounded interval associated to the p-atom A the
result is immediate. Then, we assume that w ((−∞, b)) <∞, where (−∞, b)
is an interval associated to p-atom A. Let a(y) be the representative of A,
such that supp(a) ⊂ I = (−∞, b], and we denote P (x, y) the polynomial
of degree at most N , such that N+

q,α(A;x) = N+
q,α(a(y) − P (x, y);x). We

observe that N+
q,α(A; b) = 0 and P (b, y) ≡ 0. We consider the sequence of

functions {νj}∞j=−∞ of Lemma 4.4 associated to interval I = (−∞, b). Then,
by condition (1) of Lemma 4.4

(42) a(x) =
∞∑

j=−∞
νj(x)a(x) =

∞∑
j=−∞

θj(x)

For each integer j, we denote Θj the class in EqN of the function θj(x) =
νj(x)a(x). We claim that

(43) N+
q,α(Θj ;x) ≤ Cw(I)−1/p for all x,

where C does not depend of j. By (2) of Lemma 4.4, supp(νj(y)a(y)) ⊂ Ij =
[−2−j + b,−2−j−2 + b]. Then, N+

q,α(Θj ;x) = 0 if x ≥ −2−j−2 + b. Now, we
suppose that x ≤ −2−j−2 +b. For this case, since P (b, y) ≡ 0 and by Lemma
3.3 we have∣∣∣DkP (x, y)

∣∣∣ = ∣∣∣Dk [P (x, y)− P (b, y)]
∣∣∣ ≤ cw(I)−1/p(|y − x|+ |b− y|)α−k,

Taking into account this estimate, the conditions of Lemma 4.4 and pro-
ceeding as in the proof of (i) in Lemma 4.3, we obtain (43) For each integer
j, we define

µj = C

(
w(Ij)
w(I)

)1/p

and aj(y) = µ−1
j θj(y),

where C is the constant in (43) . We denote by Aj the class in EqN of aj(y).
Then, by (43) , we have N+

q,α(Aj ;x) ≤ w(Ij)−1/p and supp(aj) ⊂ Ij . Then,
the classes Aj are p-atom in Hp,+

q,α (w) with bounded associated intervals.
Using (3) of Lemma 4.4, we get

∑∞
j=−∞ |µj |p ≤ C. It is not difficult to show



that the norm in Hp,+
q,α (w) of a p-atom is bounded by a constant C not

depending of the p-atom, then we have that
∞∑

j=−∞
‖µjAj‖pHp,+

q,α (w)
=

∞∑
j=−∞

|µj |p ‖Aj‖pHp,+
q,α (w)

≤ C
∞∑

j=−∞
|µj |p <∞.

Thus, by Corollary 3.7 there exists F inHp,+
q,α (w) such that F =

∑∞
j=−∞ µjAj

in Hp,+
q,α (w) and by Corollary 3.5 F =

∑∞
j=−∞ µjAj in EqN , and by (ii) of

Lemma 3.6 and (42) we have that F = A in EqN .

Proof of Corrolary 2.2. By Theorem 2.1, we have

F =
∑
k

λkAk in EqN , and
∑

|λk|p ≤ c ‖F‖p
Hp,+

q,α (w)
.

Now, applying Lemma 4.5, we can express each p-atom Ak as

Ak =
∑
j

µk,jAk,j in EqN , where
∑
j

|µk,j |p ≤ C,

and the associated intervals to the p-atoms Ak,j are bounded. Then,

F =
∑
k

∑
j

λkµk,jAk,j in EqN , and

∑
k

∑
j

|λkµk,j |p ≤
∑
k

|λk|p
∑
j

|µk,j |p ≤ C
∑
k

|λk|p ≤ C ‖F‖p
Hp,+

q,α (w)
.

Lemma 4.6. Let f ∈ D′(x−∞,∞), and we suppose that DN+1f ≡ 0.
Then f agrees with a polynomial of degree less than or equal to N + 1 in
D′(x−∞,∞).

This is well known and we will be omitted its proof.
The following lemma proves the first part of Theorem 2.3.

Lemma 4.7. Let w ∈ A+
s and (α+ 1/q) p ≥ s > 1 or (α+ 1/q) p > 1 if

s = 1, where 0 < p ≤ 1, and let γ ≥ α. If a(y) is a p-atom in Hp
+,γ(w) then∥∥Pαa∥∥Hp,+

q,α (w)
≤ C,

where C is a finite constant not depending on a(y).

Proof. Without loss of generality, we can suppose that x−∞ ≤ 0 and
supp(a) ⊂ I = [0, b]. Let x ∈ (x−∞,∞) and z > 0. As in(11) of Lemma
3.11, we define

R(x, z) =

1
Γ(α)

[
∫ ∞

x+z
(y − x− z)α−1 a(y)dy −

∫ ∞

x
(
N∑
k=0

ck,α (y − x)α−1−k zk)a(y)dy zk].

We suppose that x < −4b. We observe that if there exists x ∈ (x−∞,∞)
such that x < −4b then d(x−∞, I) > |I| = b, therefore a(y) has vanishing
moments up to order γ− 1 and since γ ≥ α = N + β, we have that a(y) has
vanishing moments up to order N . We will prove the followings estimates



(i) If z ≤ |x|
2 ,

|R(x, z)| ≤ Cw(I)−1/p

(
b

|x|

)α+1

zα.

(ii) If z > |x|
2 and |x+ z| > 2b then

|R(x, z)| ≤ Cw(I)−1/p bN+2

|x+ z|2−β
+ Cw(I)−1/p

(
b

|x|

)α+1

zα.

(iii) If z > |x|
2 and |x+ z| ≤ 2b then

|R(x, z)| ≤ Cw(I)−1/p

(
b

|x|

)α
zα.

Let us consider (i) . We get that

R(x, z) =
1

Γ(α)

∫ ∞

x+z
[(y − x− z)α−1 −

N∑
k=0

ck,α (y − x)α−1−k zka(y)]dy

− 1
Γ(α)

N∑
k=0

ck,α

∫ x+z

x
(y − x)α−1−k a(y)dy zk = R1 +R2.

Thus since x + z ≤ 0 and supp(a) ⊂ [0, b], it follows that R2 vanishes. As
for R1, by Taylor’s formula and Lemma 3.12, we have that

|R1| ≤
∣∣DN+1Pαa(x− θz)

∣∣ zN+1 ≤ Cw(I)−1/p bN+2

|x|2+N+1−β z
N+1

≤ Cw(I)−1/p

(
b

|x|

)α+1( z

|x|

)N+1−α
zα ≤ Cw(I)−1/p

(
b

|x|

)α+1

zα,

which implies (i).
We observe that

(44) |R(x, z)| ≤ |Pαa(x+ z)|+ C

N∑
k=0

∣∣∣DkPαa(x)
∣∣∣ zk

Then, if z > |x|
2 , by Lemma 3.12, we obtain

(45)
∣∣∣DkPαa(x)

∣∣∣ zk ≤ cw(I)−1/p b
N+2zk

|x|2+k−β
≤ cw(I)−1/p

(
b

|x|

)α+1

zα.

In case (ii), i.e., when |x+ z| > 2b, applying Lemma 3.12 with k = 0, we get

|Pαa(x+ z)| ≤ Cw(I)−1/p bN+2

|x+ z|2−β
,

and thus (ii) holds. As for (iii), we have that |x+ z| ≤ 2b, then it follows
that

|Pαa(x+ z)| ≤ C ‖a‖∞
∫ b

x+z
|y − x− z|α−1 dy ≤ Cw(I)−1/pbα,

therefore, since z
|x| > 1/2, we obtain

|Pαa(x+ z)| ≤ Cw(I)−1/p

(
b

|x|

)α
zα.

Then, from (44), the estimate above and (45), we get (iii).



Taking into account (i), (ii) and (iii) and arguing as the proof of Theorem
1 in [3] we obtain that for x < −4b
(46)

N+
q,α(Pαa;x) ≤ Cw(I)−1/p

(
b

|x|

)α+1/q

≤ Cw(I)−1/p
(
M+χI(x)

)α+1/q

holds. This estimate also holds if x > b, since Pαa(x) = 0 for x > b. If
−4b ≤ x < b, by Lemma 3.11, and since ‖a‖∞ ≤ w(I)−1/p, we get

(47) N+
q,α(Pαa;x) ≤ Cw(I)−1/p.

Since M+χI(x) ≥ 1/5 if x ∈ [−4b, b), it follows that (46) holds for every
x ∈ (x−∞,∞). Then, the lemma follows from (46) and part (2) of Lemma
3.1. If d(x−∞, I) ≤ |I| the conclusion of lemma follows from (47) and part
(3) of Lemma 3.1.

Proof of Theorem 2.3. The first part of theorem follows from Theorem
1.2 and Lemma 4.7.

Now, we suppose that α is a natural number. Then, if a(y) is a p-atom
in Hp

+,γ(w), it is not difficult to see that

(48) DαPαa(x) = (−1)α a(x).

We will study the application Dα in Hp,+
q,α (w). Let F ∈ Hp,+

q,α (w) . Since
N+
q,α(F ;x) ∈ Lp (w), N+

q,α(F ;x) is finite almost every point x ∈ (x−∞,∞);
we consider a point x in this conditions and Let f be the representative of
F satisfying N+

q,α(F ;x) = n+
q,α(f ;x). Let φ ∈ Φγ(x) and we suppose that

supp(φ) ⊂ Iφ = [x, c] . Then, by the definition of DαF , taking into account
that α ≤ γ (then φ ∈ Φα(x)) and applying the Hölder’s inequality, we obtain

|〈DαF, φ〉| = |〈Dαf, φ〉| = |〈f,Dαφ〉| =

∣∣∣∣∣
∫
Iφ

f(y)Dαφ(y)dy

∣∣∣∣∣
=
∣∣∣∣∫ c

x
f(y)Dαφ(y)dy

∣∣∣∣ ≤ 1
|Iφ|α+1

∫ c

x
|f(y)| dy

≤ 1
|Iφ|α

(
1
|Iφ|

∫ c

x
|f(y)|q dy

)1/q

≤ N+
q,α(F ;x).

Therefore (DαF )∗+,γ (x) ≤ N+
q,α(F ;x), which implies that

(49) ‖DαF‖Hp
+,γ(w) ≤ ‖F‖Hp,+

q,α (w) .

We denote P̃αf the extension of the first part of Theorem. We will prove
that P̃α is onto. Let F ∈ Hp,+

q,α (w), by (49) DαF ∈ Hp
+,γ (w), then by

Theorem 1.2 we have that

(50) DαF =
∑
j

λjaj , where
∑
j

|λj |p ∼ ‖DαF‖p
Hp

+,γ(w)
.

Then, if we denote f = (−1)α
∑

j λjaj , that belongs to Hp
+,γ (w) we get that

(51) P̃αf = (−1)α
∑
j

λjPαaj ∈ Hp,+
q,α (w) .

As consequence of Lemma 4.6, we have that Dα is one to one. From this
fact, (51) and (48) we obtain that P̃αf = F . The fact that P̃α is one to one
is consequence of Theorem 1.2, (49) and (48)



We observe that the last Theorem, its proof and Theorem 1.2 give other
proof of the Theorem 2.1, always that α is a natural number.

To finish, we will observe that in general, in the case that α is not a
natural number, the extension P̃α is not onto. We suppose that 0 < α < 1,
w ≡ 1, and (α+ 1/q)p > 1. Let φ ∈ C∞

0 , and we assume that |φ| ≥ c > 0 in
some interval. We define

a(x) = φ (x)

( ∞∑
n=1

cos 2nπx
2nα

)
.

It is well know that the previous series defines a Lipschitz-α function (e.g.
see [9]), then a(x) is a Lipschitz-α function. If we denote by A the class of
a(x) in Eq0 , we have that N+

q,α(A;x) is bounded and since supp(a(y)) ⊂ I

for some interval I, we get that A ∈ Hp,+
q,α (1). However, It can be shown

that does not exist any distribution f in Hp
+,γ (1) such that A = P̃αf.

We would like to thank C. Segovia for his help and encouragement
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