ON SPACES ASSOCIATED WITH PRIMITIVES OF
DISTRIBUTIONS IN ONE-SIDED HARDY SPACES

SHELDY OMBROSI

ABSTRACT. In this paper, we introduce the HZ'% (w) spaces, where 0 <
p<1,1<q<oo,a>0,and for weights w belonging to the class A}
defined by E. Sawyer. To define these spaces, we consider a one-sided
version of the maximal function N, (F,z) defined by A. Calderén. In
the case that w = 1, these spaces have been studied by A. Gatto, J. G.
Jiménez and C. Segovia. We introduce a notion of p-atom in H2'% (w),
and we prove that we can express the elements of H2'J (w) in term of
series of multiples of p-atoms. On the other side, we prove that the Weyl
fractional integral P, can be extended to a bounded operator from the
one-sided Hardy space HY (w) into H%'Z (w). Moreover, we prove that
this extension, if « is a natural number, is an isomorphism.

1. NOTATIONS, DEFINITIONS AND PREREQUISITES

Let f(x) be a Lebesgue measurable function defined on R. The one-sided
Hardy-Littlewood maximal functions M f(x) and M~ f(z) are defined as

x+h T
M+ f(z) = Sup/ F(O)]dt and M~ f(z) = Sup/ ()] dt.
h>0Jzx h>0Jxz—h

As usual, a weight w(x) is a measurable and non-negative function. If
E C R is a Lebesgue measurable set, we denote its w-measure by w(FE) =
Jpw(t)dt. A function f(x) belongs to L*(w), 0 < s < oo, if 11 2 )

1/s
(ffooo f(a:)sw(x)dx) is finite.

A weight w(x) belongs to the class AT, 1 < s < oo, defined by E. Sawyer

in [7], if there exists a constant ¢ such that

1 x 1 x+h 1 s—1
sup (/ w(t)dt) (/ w(t)“dt) <e¢,
h>0 h xz—h h T

for all real number z. We observe that w(z) belongs to the class Af if
M~w(z) < cw(z) for all real number z.
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Given w(z) € A}, 1 < s < oo, we can define two numbers x_,, and
Tihooy, =00 < Too < Tyoo < 00, such that

() w(z) = 0in (—00,T_s0),
(7)) w(x) = oo in (T4e0,00), and

(7ir) 0 < w(z) < oo for almost every = € (T_oo, Tioo)-

In order to avoid the non-interesting case r_~, = X400, We assume that there
exists a measurable set E satisfying 0 < w(E) < oc.

Let us fix w € AT and let 2_o be as before. Let L (z_s,00) ,1 < ¢ <
oo, be the space of the real-valued functions f(x) on R that belong locally
to L7 for compact subsets of (z_,00)). We endow L} (z_o,00) which the
topology generated for the seminorms

1/q
fl, 1= (m-l / If(y)\qdy> ,

where I = [a,b] is an interval in (240,00) and |[I| =b — a.
For f(z) in L (%o, 00), we define a maximal function n/,(f;z) as

nga(fi2) =supp™ [ fl, (i
p>0
where « is a positive real number.
Let N anon negative integer and Py the subspace of L] (2_oo, 00) formed
by all the polynomials of degree at most N. This subspace is of finite dimen-
sion and therefore a closed subspace of L] (z_n,00). We denote by EY; the

loc
quotient space of L} (z_,00) by Py. If F € E%, we define the seminorm

1Pl =it {Ifl i f€F}.

The family of all these seminorms induces on EY; the quotient topology.

Given a real number a > 0, we can write it « = N + 3, where N is a non
negative integer and 0 < # < 1. Now we fix a > 0 and its decomposition
a = N + 3 in the previous conditions.

For F'in EY;, we define a maximal function N, (F;x) as

NS o(Fsx) = inf {nf (fiz): f e F}.
We say that an element F' in EY, belongs to HOd (w), 0 < p < 1, if the
maximal function N/, (F;z) € LP(w). The “norm” of F in HYd (w) is

defined as ||F‘|H5;§(w) = HNL;’:O[(F;‘T)HLP(UJ) :

Definition 1.1. We shall say that a class A € E% is a p-atom in H{;;;C (w) if
there exist a representative a(y) of A and an interval I (non necessarily
bounded) such that

i) I C(x_00,00), w(l) < o0
ii) supp(a) C I
iil) N, (A4 2) < w(I)~VP for all z € (2o, 00).

We shall say that [ is an interval associated to the p-atom A.



Given a bounded function f(y) with support in an interval I = (z_c, b
where b is finite and if & > 0 we consider the Weyl fraccional integral

Puf(z) = F(la) / Ty — )7 f(y)dy for @ € (s 00).

where I'(a) denotes the Gamma function. It is easy to see that P, f(x) €
L (2_o0,00) whenever f € L®(x_x,b] . So,if &« = N+ where 0 < < 1
and N is an integer, we denote P, f the class in EY; of the function P, f(z).

As usual, C§°(R) denotes the set of all functions with compact support
having derivatives of all orders. We shall denote by D (x_, 00) the space
of all functions in C§°(R) with support contained in (z_o,00) equipped
with the usual topology and by D'(x_s,00) the space of distributions on
(T 00, 00).

Given a positive integer v and x € R, we shall say a function ¢ in C§°(R),
belongs to the class ®,(x) if there exists a bounded interval I, = [z, ]
containing the support of ¢ such that D7y satisfies

Iy [D7]l o < 1.
For f € D'(7_c0,00) we define f7  (z) as

fiy(@) = sup {[(F, ¥)| : ¢ € ®y(2)},
for all z > 7_o. Let w € A and 0 < p < 1. If v is a natural number
satisfying (y+1)p > s > L or (y+1)p > 1 if s = 1, then a distribu-
tion f in D'(z_«,00) belongs to HY _(w) if the “p-norm” HfHHi (w) =
0o 1/p . ’
<f . f_*;ﬁ(x)pw(x)dx> es finite. These spaces have been defined by L.

x
de Rosa and C. Segovia in [6]
A function a(z) defined on R is called a p-atom in H? | (w) if there exists
an interval I containing the support of a(z), such that
(i) I is contained in (z_s,00), w(I) < oo and ||a||,, < w(I)~/P
(ii) If the length of I is less than the distance d(z_o, I) from z_ to I,
then

/Ia(y)y’“dy =0,
holds for every integer k, 0 < k < ~.
The following theorem is of fundamental importance for the proof of The-

orem 2.3 below.

Theorem 1.2. Let w € A, v > 1 an integer and 0 < p < 1 such that
(v+)p>s>1or(y+1)p>1ifs=1 Then, if f € HY (w) there
exists a sequence {a;} of p-atoms in HY _(w) and a sequence {\;} of real
numbers such that f =5 Na; in D' (x_s0,00), and

a HFHI;LI:W(U,) < Z |)‘i|p < e HFH?]?W(M) )

hold. Furthermore, the intervals associated to the p-atoms a; can be assumed
to be bounded.

For a proof see [6].

Let F € EY and f € F. Since f belongs to L} (7_c,00), DNTLf is

loc
defined in the sense of distributions. On the other hand, since any two

representatives of F' differ in a polynomial of degree at most N in (z_,, 00),



we get that DVt f is independent of the representative f € F chosen.
Therefore, for F € EY,, we define DY T1F as the distribution DV f, where
f is any representative of F.

2. STATEMENT OF THE MAIN RESULTS

With the notation and definitions given in the section 1 we can state the
main results of this paper.

Theorem 2.1 (Descomposition into atoms ). Let w € Af and 0 < p <1,
such that (a« +1/q)p > s > 1 or (a+1/q)p > 1 if s = 1. Then, if F €
HE' (w) there exists a sequence {\;} of the number real and a sequence { A;}
of p-atoms in Hyd (w) such that F = 3" N A; en B (2_o0,00). Moreover
the series . \iA; converges in HY'o (w) and there exist two constants ¢ and
co such that

(1) L IF Iyt ) € DN < 2 |IFI

HES (w Hyd (w)
The next corollary proves that is enough to consider bounded intervals in
the Definition 1.1.

Corrolary 2.2. Under the hypotheses of Theorem 2.1 we can take the p-
atoms {A;} in the decomposition having bounded associated intervals I;.

The following theorem shows that, in particular, if « is a natural number
the spaces HY , (w) and H}a (w) can be identified.

Theorem 2.3. Let w € AF,0 < p < 1, and (a+1/¢)p > s > 1 or
(a+1/q)p > 1 if s = 1. Let v an integer such that v > «. Then, P,

can be extended to a bounded linear operator from Hf;,Jr(w) into Hgﬂ(w).
Moreover, if we suppose that o is a natural number this extension is an
isomorphism.

3. SOME PREVIOUS LEMMAS

The next lemma contains the basic results for A} weights and one-sided
maximal functions that we shall need in this paper.

Lemma 3.1.

(1) Let 1 < s1 < s < 00. if the weight belongs to the class Ajl, then it
also belongs to A, .

(2) Let 1 < s < oo. The one-sided Hardy-Littlewood maximal M™ is
bounded on L*(w) if and only if w belongs to A7.

(3) Let w € AF,1 < s < oo. Let a < b be the end points of the bounded
interval I. Then, the interval I~ with end points a — |I| and a,
satisfies

w(I™) < cyw(l),
where the constant ¢, does not depend on 1.

(4) Given w € Af, 1 < s < co for every a € R, the w—measure of the

interval (a, 00) is equal to infinite.



(5) Let 1 < s < oo. Then, if w € Al there exists € > 0 such that
we Al .
Proofs of parts (2) and (5) may be found in [7] and [5]. Proofs of parts
(1) and (4) are very simple and shall be omitted. Part (3) is an immediate
consequence of (2).

Lemma 3.2. There exists an infinitely differentiable function ¢ with support
in [—1,0], such that

P(a) = [ AP)OOE — o)y,

for all polynomials P(x) of degree less than or equal to N and for every
A> 0.

The proof is the same as Lemma 2.6 in [2].

Lemma 3.3. Let f1 and fa be two representatives of an element F in B,
and P(y) = fi1(y) — fa(y). There exists a constant cj such that

(£)'ro

holds for every x1, xo and y in (x_s, 00).

—k
< (ng o (fr,21) + ng o (f2,22)) (|21 — y| + |22 — y[)*

Proof. we assume that zo > x1. First, we suppose that y > xo, in this
case, by Lemma 3.2 and proceeding as in the proof of Lemma 1 in [1], we
get,

@) ‘(zj)kP(y)

Now, if y < @9, taking into account that D*(f1(y) — f2(y)) is a polynomial
of degree at most N — k, and by its Taylor’s expansion, we have

<c (n;—,a(fbxl) + n;a(f2ax2)) (y — Tty — $2)a_k'

k . 7N_k k+j . (?J—x?)j
(3)  DMAW - LW) =Y DTAW) - Le)| =R
7=0

Yy=x2 j!

Using (2) with y = x2, we obtain

D) - )

<c (nia(flaxl) + n;r,a(f%xQ)) |$1 — 2 ok :

Yy=x2

Then,
4) D" (£1(y) — £w)

N—k B ;
=C (n;r,a(flvxl) + "(J]r,a(fz,xz)) (29 — )" Z <H>

J=0

Since |x1 — z2| < |y — x1| + |y — x2|, we obtain that the right side of (4) is
bounded by

ly — @] + |y — |\ "
To — T1 '

Cn (0o (f1. 1) + nf o (f2, 2)) (w2 — 21)*7F (



From this fact and taking into account that o« = N + 3, we obtain that

D*(fily) - fz(y))‘ < c(nfo(froen) +ngo(fo,22)) (ly — w1 + [y — 22))* 7",
holds for every y. m

Lemma 3.4. Let F belongs to EY, with N, (F,xz0) < co. Then:

(i) there exists a unique f in F' such that nza(f, xo) < oo and, therefore,
Nq+,o¢<F; J}()) = n;a(fa 370)-

(ii) For any interval I = [a,b] C (z_00,00) With a > zg, there exists
a constant ¢ depending on xg and I such that if f is the unique
representative of F' given in (i), then

IE(ly.r < [flgr < ¢ ngalfizo) = ¢ Nyo(F, zo)

The constant ¢ can be Chosen independently of zy provided that xg

varies in a compact set.
Proof. The proof is similar to that of Lemma 3 in [3]. O
Corrolary 3.5. If {F;} is a sequence of elements in EY; converging to F in
Hod (w),0 < p <1, then {F;} converges to F in E%.

Proof. Let an interval I = [a,b] C (z_x,00). Since a > x_o0, d(T_x0, a) =

r > 0. Let n be the first positive integer such that % < 5, and we consider
the interval I, = [a - %‘,a} . Now, for (ii) of Lemma 3.4

(5) IF — Fll,; < CINS(F — Fy; x) for every x in I, .

On the other hand, since I, C (r_0,00), w(I,,;) > 0. Then

IF =R, < Crul(l / W= FaPw(e)ds < e |1F = Bl .

which proves the corollary. =

Lemma 3.6. If {E;} is a sequence of elements in EY; such that the series
> i Nyt (Fi, @) is finite a.e. & in (oo, 00). Then

(i) The series ), F; converges in E% to an element F and

(6) oW(Frz) < Z o(Fi,x) for all z € (-0, 00).

(ii) Let o be a point where Y, N5, (Fj; xo) is finite. If f; is the unique
representative of F; satisfying ng ,(fi; x0) = N\, (F; xo), then 7, f;
converges in L?OC(QU_OO, o0) to a function f that is the unique repre-
sentative of F' satisfying n/,(f;z0) = N, (F;xo).

Proof. First we prove (ii). Let xo be a point where »-, N, (Fj; o) is
finite. Then by Lemma 3.4, for each ¢ there exists a representative f; of F;
satisfying n, (fz;x()) N, o (Fi;20) < 00. Let @ € (#_o0,00) another point
such that Z o o(Fi;x) is finite, then for each 7 there exists a polynomial
Pi(z,y) of degree at most N such that n},(fi(y) — Pi(z,y);2) = N, (Fi; x).
Using Lemma 3.3, we get

(1) P2, y)| < (Nja(Fiszo) + Nfo (Fi32)) (ly — @ol + Jy — z])*



Let us fix an interval I = [a,b] C (x_,0) and we consider x; < a such
that Y, N\, (Fi; 1) < oo. Then, by (ii) of Lemma 3.4 and (7), we obtain

|f’b|q[< |fl (x17')’q[+‘PA(x17')‘q[
< CI,ILIO (Nq,a(Fi;l'O) + N+ (Ful'l))

Thus

k m k k

SE=3"6 €Y il S Cravme Y. (Nfa(Fiszo) + Ny (Fiiz1))
i=1 i=1 q.1 i=m-+1 i=m-+1

o0
which proves that there exists f en Lj (2_s,00) such that Y f; = f in
i=1

this space. Let us denote by F' the class of f in E}. Since
(8) ngo(f;20) < Zn;ﬁa(fi;ﬂﬁo Z o(Fis o) < 00,

we have that f is the unique representative of F' satisfying N L(fi20) =
N g,a (F .7}0)
Now, we will prove (i). As consequence of inequality

K
<> fi-
i=1

)

q,1

q,1

o0
we have F = ) F; in EY;. Moreover, from (8) we obtain
i=1

o(F5x0) <ZN (Fy; o).

This conclude the proof. m
Corrolary 3.7. The space HY'd (w), 0 < p < 1, is complete.

Taking into account Lemma 3.6, the proof of this result is similar to that
of Corollary 2 in [3].

Lemma 3.8. The maximal function N .(F,x) associated with a class F in
E%, is lower semicontinuous.

See Lemma 6 in [1].

Lemma 3.9. Let f a representative of F' in E?V. We suppose that qua(F; x)
is finite and we denote by P(x,y) the unique polynomial of degree almost N
such that n},(f(y) — P(z,y);2) = N, (F;x). Then f(z) = P(x,z) for
almost every x such that N, (F;x) is ﬁmte.

See Lemma 2 in [1].

Lemma 3.10. Let F in E%. We suppose that qua(F,x) <t for every x
belonging to a set E C (r_c0,00). Let f a representative of F' and P(x,y)
the unique polynomial in Px such that N} (F;x) = nf,(f(y) — P(y,z);x).
For each x in E we define Ap(z) = D];P(x,y)‘y:x. Then,

© Aule) = Y o = o) < ot o -7l



for all © and T in E. Furthermore, Ay satisfies a Lipschitz-3 condition
on E with constant ct (we recall that « = N + (3, where 0 < 3 < 1) and if
0 <k < N, Ag(x) satisfies a uniform Lipschitz-1 condition on every bounded
subset of E.

By Lemma 3.2 and proceeding as in the proof of Lemma 5 in [1] we obtain
the proof of this lemma.
The next results will be used in the proof of Theorem 2.3.

Lemma 3.11. Let f € L, with supp(f) C I = (z_o0,b] where b is finite.

Then
(10) Nyo(Pafi2) < C|lfllo for every a € (v-o,00),
where C' does not depend on f.

Proof. For x € (x_o0,00) and z > 0, we define

(11) R(z,z) =

1 °° a— jo
w[L+Z(y—x—3) 1f( / (cha 1kk> f(y)dy],

where (chvzo Cha (Y — 916)0‘_1_]’C zk) is the Taylor’s expansion of order N of

the function (y — z — 2)* . Let p > 0. We will estimate p~® | R(z, Moo,
We recall that « = N 4 3, and we consider first the case 0 < § < 1. Since

o=t [ 1 1(y)
Rm,z:/ y—x—2)""" f(y)dy
F(Oé) T+z
1 [ N
e T (Rt A S PN e F
F(a) 42z k=0
z+2z 1k
(12) — Z ka/ ) fly)dy 2= AL+ Ay — As.
For As, by the mean value Theorem and since § < 1, we obtain
4l <CIfl [ =22y MY <l
x+2z

For Ag, we have
(13)

:c+2z
A3 < Clflloo Z/ )Ty 2 < O fllo ZZ“ PP <O f )l 2

In the same way we obtain

A <O fllo 2
Then, for § < 1, we have that
(14) |R(z, 2)] < O f]lo 2



however (14) also holds for 8 = 1. In fact, since (y — = — z)" is a polynomial
of degree N, it coincides with its Taylor’s expansion of order N, so we have
that

R(z,z) =

oo o0 N
/ (y—a—2)" fly)dy — / <Z crn (y— )" f(y) Zk) dy]

Ttz k=0

1
T'(N +1)

ST [ e sy
I'(N+1) = s '

Then , in the same way that we obtained (13), we can prove that (14) also
holds in this case.
As consequence of (14) we obtain

B B 1 [P 1/q
p e B ygo =0 (5 [ 1R )

1 [P 1/q
< Clfllep ( / d) <C|flle.
P Jo
which implies (10). m

Lemma 3.12. Let a(y) a p-atom in HY (w) with vanishing moments up
to the order N. Furthermore, we suppose that supp(a) C I = [x,b] and
lall, < w(I)~YP. Then, for every natural number k and if x € (2—o0,0)
|z — xo| > 2|I|} holds that
k —-1/p |I|N+2
‘D Paa(aj)‘ < Cy w(I) 2P

Proof. Without loss of generality, we can suppose that I = [0,b]. As

supp(a) C I, the result is trivial if x > 2b, then we consider x < —2b. In

this case Pya(z) = ﬁ f(f (z —y)* ' a(y)dy and

b
D*Pra(z) = cpa /0 (y — 2)* "7 a(y)dy.

Then, taking into account that a(y) has vanishing moments up to order N,
x < —2b, and recalling that o = N + 3, we have

b N -
}DkPaa(:n)‘ = Cku/ ((y — )R an,i (=) ik yz> a(y)dy
0 i=0
—en—2 [° N+1 1p OV
< Cll™ Y [Ma) i dy < Cutr)” I
n

4. PROOF OF THE RESULTS

The following lemma states some properties of a one-sided partition of
unity that can be found in [6].

Lemma 4.1 (a one-sided partition of unity). Let a < b and we consider the
interval I = (a,b). Then there exists a sequence {nj}f.il of C§° functions
satisfying the following conditions



1) 0 <nj(z) <1and 37 m(2)X(ap)(T) = X(ap) (2)-

2) For each positive integer j, if I; = [a + 277 (b — a),a + 277 2(b — a)]
supp(n;) C I;. If we denote r; = (b;ja), then for every z € I; r; <
x — a < crj, where ¢ does not depend on j.

3) If I; = (a+27971b—a),min{a + 277"2(b — a),b}) , U;I; = I. Fur-

thermore, the number of interval I ; that intersect to other interval

I 1 does not exceed two.
4) If k is an integer, k > 0, we have

Dy (@) < ™,

where Cj, does not depend on j.

Let F € HY'd (w). Given t > 0, we consider

Q= ={r€ (r_c0,) : NqJr (F,z) > t},

,

since N, (F,z) € LP(w), w(2) < oo and by Lemma 3.8 this is an open
subset of (z_s,00). Then Q = J;2, I;, where intervals I; = (aj, b;) are the
connected components of 2. We observe that b; < oo, since w (I;) < w () <
oo (see part (3) of Lemma 3.1). If there is an interval I; with a; = z_o,
then we will assume that 7 = 1. If not, we shall assume that I; = (). Let f

belonging We define

(15) 01(y) = xn, (W) (f(y) — P(b1,v)),

where P(bi,y) € Py and N/ (F,b1) = nga (f(y) — P(b1,)) .

On the other hand, for each ¢ > 1, Let {n; ;}i~1>1 be the partition
of unity as Lemma 4.1 associated with each interval I; = (a;,b;) and we
denote I; ; and IA” that intervals I; and fj of the same lemma. We de-
fine x;; = by if j = 1,2 and ;5 = a; for j > 2. Let C = (2_o,00) —
Q. We observe that each point z;; satisfies d(I; j,C) = d(I; ;,x;;) where
IAM = (ai +2777(b; — a;), min {ai +279F2(b; — ay), bl}) Furthermore, as
the points z;; belong to C, we have that N, (F,z;;) < t. We denote
P(x;;,y) the polynomial satisfying N5, (F,x;;) = ng, (f(y) — P(xij,y))-
Now, for each ¢ > 1 and j > 1, we define

(16) 0i.i(y) = mii(Y)xr(y) (f(y) = P(xij,y)) -

The functions 6; ; and 6; belong to L?OC(QU_OO, 00). Let us denote by ©; ;
and O the class of 0; ; and 67 in E?V respectively.
For the following two lemmas we will use the previous notation.

Lemma 4.2. Let F € Hbd (w), and f € F. If g(y) is defined in (z_s0,00)
as

oly) = { S ica > ae1 Mg (Wxn W) P (@i g, y) + xn, (v) P(bi, ) if y € Q,
fy) ify ¢,

and G denote its class in E?V, then there exists a constant C such that

NS (G, x) < Ct for all x € (2o, 0).



Proof. It will be enough to prove that the function g agrees almost
everywhere with a function having derivatives continuous up to order N
and its derivative of order IV satisfies a Lipschitz-3 condition with constant
ct on (x_o0,00). The function g(y) is infinitely differentiable on €, and if
x € , we have that

(17) DFg(z) =

oo oo k

k! _ _
> YD AT h,Dtm,j(ﬂf) Dy hP(xm,y)‘ +x1,(x) Dy "Pbry)|
i=2 j=1h=0 y=r y=r

Let & € C. By condition (3) of Lemma 4.1 we have, for  in 2, that

(18) DiPE.y)| =

oo oo k
222 h!(kkih)!Dhm,j(if) Dy~ "P(, y)‘y

+x1,(z) DyP(Z,y)
=2 j=1 h=0 *

y=x

Let T € C = (-0, 00) — 2, x € Q and we denote Z the point in C closest to
x. From (17) and (18), we obtain for x € Q that

(19) Dg(x) ~ DiP(.y)| _ =

oo oo k k!

h k—h k—h

SN i) | D] - oG]

i=2 j=1 h=0
(@) | DhPuw)| - D@ |+ DhP@w| - DhP@)

y=z y=z y=x y

We suppose that x € ./T;] = (ai +277(b; — a;), min {ai +27942(b; — ay), bz})
for some 7 > 1 and j > 1. We denote r; ; = % = ‘2[—;‘ Since x;1 = x;2 = b;

and x; j = a; for j > 2, and taking into account (2) of Lemma 4.1, we have
that

|z — x| < |a;; — x| < eryy, and
& — 2| < fosy —al < clz—al.

By Lemma 3.3 and since z; j, , and Z belong to C, we obtain

‘ DlyffhP(xi,j,y)’y_x — D’y“*hP(E, y)’y:m' <ect |T— x\a_k rffj, and
k(s Pk p(= < — ok
@) |pirGa)| - pip@a|, | < colm-att.

Applying These estimates in (19), and using condition (4) of Lemma 4.1, we
have that

(21) Dhg(o) - D), | <l ol

If x € 1 = (r—c0,b1), we have that & = by. Since in the right member of
(19) all the terms are cancelled except the last one, by (20) we have that
(21) also holds in this case.



Now, we take k = N + 1. Assuming that x € I; for i > 1, from (19), we
obtain

oo oo N+1
N +1! _ _
N T 1y mea@) | Dy (Plaigy) - P@y)| _ ]
i=2 j=1 h=1 ’ y=z

Since x € I; where ¢ > 1, then x belongs to IAM-O for some jo > 1. We
suppose that jo > 5. Then D", j(z) = 0 for j = 1,2,3. Moreover, for
j >3, T=u; = a; then DN*lg(z) is vanished. On the other hand,
if jo < 5, then x ¢ f” for j > 7. Furthermore if j < 7, we have that
r;; > 278|1;| . From the last estimate and by condition 4) of Lemma 4.1, we
obtain
DM (a)| < elnl ™"
Now, applying Lemma 3.3 and recalling that & = N + 3, we obtain

_ _ ~ —1+4h _
DY Py, y)| = DYFTP@y)| | <etnl T <a 1)

y=z y=x

From (22) and taking into account these estimates, we obtain
(23) ‘DNHg(x)‘ <ct |LIP7! for every @ € I

If v € I1, g(x) = P(by, x), and therefore in this case DV lg(x) = 0 and (23)
also holds. Now, for each £k = 0,1,2,...N 4+ 1, we define the function B} in
(T —00,0) as
[ DFg(x) sizeQ
By () = { Ag(x) sizeC ’
where Ag(z) = D’;P(az,y)’y:x is the function of Lemma 3.10. Then, if
x € Q, and T € C the inequality (21) can be rewritten as

(z— )"

N—k
(24) Bi(z) = > Bin(@) | Sct [T - x[*7F,
h=0

para 0 < k < N. Now since N, (F.z) <t in C, Lemma 3.10 shows that
this inequality holds also for x € C. This shows that By(x) is continuous for
0 <k < N, and for z in C. Furthermore, for 1 < k < N, By(z) is continuous
in (z_s,00) since Bg(x) = D*g(z) in Q. By (24) with k = N we obtain
that By satisfies

(25) |Bn(z) — By(y)| <ct |z —y|?,

for every x and y € (z_,o0) and one of them in C. Now we will prove that
(25) also holds without every = and y in (x_q, 00). We consider z; < z in
Q, then z; € I;;, and x2 € I;;, = (aiy, bi,) . If i1 # i9, we have

(26) |21 — ag,|” + |72 — a5, < 2]z0 — 3|7

Taking into account that a;, € C, using (25) and (26), we obtain
|Bn(21) — By (22)] < [Bn(21) — Bn(ai,)| + |Bn(21) — By (ai,)]

(27) <ct [ya;l — i, + |22 — az,|°

< ctlzy —ao)?.



On the other hand, if i3 = 41, i.e., 1 and z2 in I;;. Then, taking into
account that By.i(z) = DNtlg(z) for z € Q, (23) and the inequality
|21 — 2| < |1;,], we have

|z1 — @2

[By(21) = By (22)] < [BNn4+1(Q)] |21 — 22| < ct=——7—3

|2 |

(28) <tz — x|’

As consequence (25), (27) and (28), we obtain that By satisfies a Lipschitz-
B condition in (z_s,00) with constant c¢t. The inequality (24) shows that
D¥By(z) = By(z) in C, identity which also holds in 2. Furthermore, Lemma
3.9 permits us assert that Bo(z) = Ap(z) = P(z,x) = g(z) almost every-
where in C. Thus we conclude that g(x) coincides almost everywhere in
(_c0,00) with By(x) which has continuous derivatives up to order N in
(r_c0,0), and its derivative of order N satisfies a Lipschitz-3 condition
with constant ct. m

With the notation given in (16) we have the following result.

Lemma 4.3 (one-sided Calderén-Zygmund-type). Let F € Hbd (w) and
w € AF, where (a+1/q)p > s>1or (a+1/q)p > 1 ifs=1. Then, the
following conditions are satisfied:

(i) Ifz € ji,j = (ai + 27].71([}5 — ai),min {CLZ‘ + 2ij+2(bi — CLZ‘), bz})

N;fa(@i,j,a:) < CN;?Q(F,x), and
N;a(@l,x) < CNJQ(F,x)XII(x) for all x € (-0, 0)
(i) Ifxr>z_ and z ¢ fi,j
a+1/
qua(@m,x) <ct [MJFXT_ (a:)} q.

iii) The series Y, : N5, (0; ;) + N, (O©1;2) is pointwise convergent
i, T g, J
for almost every x in (r_«, ) Moreover

/ ZN ©ij;x) + Ny (O1; ) dm<c/ oJ(F ) Pw(z)d.

i>1,7
(iv) The series } ;4 >>;©;; +©1 = O converges in EY;, and for almost
every x in (x_oo, oo),
(29) Z N l]a N(Za(@lal’)
i>1,5

(v) Furthermore,

/ (0, 2) Pw(z)ds < c/ (F,2) Pw(z)da.

(vi) f G=F -©, N/ (G,z) < ct.

Proof. The proof follows the lines of the argument in Lemma 10 of
Gatto-Jiménez-Segovia [3]. Let us prove (i). First, we consider ¢ > 1, and
j>1and x € fw We can assume that N;fa(F;x) < 00, otherwise, there
is nothing to prove. Let P(z,y) be the polynomial of degree at most N



satisfying ngq(f(y) — P(x,y);z) = qua(F; x). Since supp(n;;) C I;;, we

have for j > 1
0.5 (y) = nij(y) (f(y) — P(@i;,y))
We define the polynomial

y (y — )"
Q’L] T Z/ Z D 771,] y) - P(%,],y))] y=z T
Let us estimate p~“ \(9”() - Qij(z, )], watp) - We have that
(30) Qi,j(fc y)

N . .’L‘)h
-3 [piertan - pason] O (X prasn )]
k=0 y= h!
b;—a;

Let r;; = 5 and we consider y € [z,x + p|. Then, taking into account
that ; ; = b; if j =2 and x; j = a; if j > 2, and by (2) of Lemma 4.1

|z; j — x| < 4r;;, and
ly — x|+ |y —zigl <2y — x| + |25 — 2| <4(p+7i5)
Since N, (F,z;;) <t < N/, (F;z) and by Lemma 3.3, we get that
(31)  |DE(P(z,y) — P(zij,y))| < C NS (F;2) (ly — x| + |z — a)* "
Assume first that p > r; ;. In this case, we have
(32) 10:.5(y) — Qij(z,y)| = [mi;(y) (f(y) — P(zij,v)) — Qij(z,y)
<ni; (W) [f(y) — P(z,y)| +ni; () (P2, y) — P(xij, y)| + |Qi;(z,y)]
For the second term of the right hand side of this inequality, we obtain
(33) 1,5 (y) [(P(x,y) = P(xij,y)| < ¢ Nyo(Fi2)p®
Now, let us estimate |@Q; j(x,y)|. From (31) with y = z, we have

< eN o (Fi )i ™.

Dy(P(z,y) — P(-Ti,jyy)))

y=x
Then, from (30), by condition (4) of Lemma 4.1, and recalling that p > r; ;
and a = N + ( it follows that

N
(34) ‘Qid(x?y)‘ < CZ NqJ,ra( ?] kpk (Z Crz] )

< cNJr oJ(Fsx) p@

Integrating (32) over [z,x + p] and using the estimates (33) and (34), we
get for p > r; ;

(35) _"“W',j(-) = Qi (T, )y (rat g
W) = P@y)lg faate) + € NealF52)
Now we consider the case p < r; ;. We rewrite Q; ; (m, y) as
Qz‘,j(w y)

3 3 (y — )
h X
Z 771,] ( -D P(H?w,y)) - h')] .

k=0



Adding and subtracting the expression

mig (W) P(@,y) + Y D)=
k=0

(P(z,y) — P(zij,y))

to Qi,j(z,y) we obtain
10,5 (y) — Qij(z, y)l <ni;(y)f(y) — Pz, y)]

— )k
nz,J ZDknz,J 1 ) ‘ [(P(z,y) — P(l‘i,j’y”
al (y — 2)*
(36) +3 {ka,j@)k!} o
— )
(P(e,y) = Plais.y (Z Dy(P(ay) =Pl _, (yh')>] ‘

<[f(y) = P(z,y)[ + 51 + S2.

If y € [z, + p], and considering condition (4) of Lemma 4.1 and (31),
recalling that o« = N + 8 and p < 7;;, we get

S, — |pN+1,, 4(§)M (P(z,y) — P(xii,y)]
1= Nij N+ 1 Y oY
(N1 N+1a+ (7. +
<cr P TN () vy < eNJ (F ) p”

As for Sy, similar arguments show that

N k N+1-k

y— _ y—z

So=1) {D’“m,j( )(k,)} [Df,v“ "(P(z,y) — P(xij,y)) e (,Z,]

k=1 ’ o )

N
<e Y rtpENS(Fsw) (rig + p) T NI < eNG () p
k=1

Integrating (36) and by the estimates just obtained we get that (35) also
holds for p < r; ;. This shows that

Ngo(©ij,2) < e Njo (Fix).

q?a

Now we consider the classes ©;1 with ¢« > 1 and x € IAM = (a; + 2_2(171- —
a;),b;). We can express 6; 1(y) as following way

0,1 (y) = mi (y)xr, (y) (f(y) — P(bi,y))
=11 (y) (f(y) = P(bi,y)) — mi.1(¥)X[p,00) () (f (y) — P(bi, y))
(37) =0i1(y) — 01(y).
We denote @11 and ©? 71 the classes of 91 1(y) and (91-27 1(y) respectively.
For the class @z’l, arguing as before we get

10(051,7) < eNfo(F x),

forallz € IZ 1. Now we consider the class @Z 1- Let us estimate f otp

2)[ dy.
Since supp(67,) C [bi, a; + 2(b; — a;)], we can assume that z + p > bz-7 if not




the integral that we want to estimate is equal to zero. By (1) of Lemma 4.1,
and since x < b;, we have

x+p 5 q bi+p 1
/ 162, (5)|* dy < /b F() — Plbi, )7 dy < N (F,by) o+

and since N, (F,b;) <t < N, (F;x) we obtain N}, (07,,2) < N, (F;x).
Then, it follows that

NI (@ih )<CN (F .73)

q,&

To finish the proof of (i) let us estimate N/, (©1,2). Let x € Iy = (20, b1) .
We define the polynomial Qq(x,y) = P(x y) — P(b1,y). Let us estimate

“101(.) = Q1(®, )4 (3,040 - We assume first that z + p < by. In this case,
by (15) we have

1 z+p 1/q

P ) = Qe Ny = vy ([ 100 = Play)lay)
< NS (F;x).

If x + p > by, using Lemma 3.3 we obtain that

T+p
p 101(.) — Q1 (z, )\q’xx_H)] N;’a(F; T) + p—oc—l/q(/b |P(z,y) — P(b1,y)|? dy)l/q
1

< c(N;ja(F; r) + N;a(F, b)) < cN+ L(Fsx),

Then, N, (©1,2) < NS, (F;x)xr, (x) if © € I;. Moreover, since 6y (y) = 0
ify > bl, we have that N+ L(01,2) =0if z > by.
Let us prove condltlon (11). Again, we work first with the classes ©; ;
for i > 1land j > 1. Let 2 > x_, and x ¢ fzj We will estimate
03l g g U oo <@ < ai+ 27771(b; — a;), since supp(0; ;) C I, j,
we have that 105,514 (204 18 €qual to zero unless [z, 2 + p] N i ; # 0. Then,
(38) p>a;+ 277 (b —a;) — .

On the other hand, since supp(n; ;) C I;; C [as, a; + 4r; ;], we get,

) x+p 1
B9 5 Bislypuig = " i) 1) = Plaig )l d)?

1 1 aitdry, oy
< O = Plosaar + s 1P@is) = Plawy)ltdy)o,

Since x; j = a; for j > 2, the second summand of the last line is null except
in the case j = 2. In this case ;2 = b; and using Lemma 3.3, we obtain

a;+4r; 1/q .
([ 1P - Plaslar) - <cen
a;

Therefore, substituting in (39) and by (38), we get

_ T35 tl/e +
1051y fp.oy) < Ct<ai+2—j(bi—ai)—x) <t [M xfi,j(x)}

This implies that

a+1/q
(40) qua(Gm;x) < ct [MJFXEJ (ac)}



for oo < o < a; +27771(b; — a;). Since 0;;(y) is equal to zero for y >

a; +279%2(b; — a;), we have that (40) also holds for z > a; +27772(b; — a;).

By (37) and using a similar argument we obtain (ii) for the classes ©; 1.
As for condition (iii). Since w € A( +1/q)p And (¢ +1/¢)p > 1 and

taking into account (i), (ii) and (2) of Lemma 3.1, we have

/OO ZZ Oijix) + N (O1;2) | w(x)ds
Tooo \ j=2 j=1
<c/ o (Fsx)Pw(z dac—i—cZZ/ J(F;z)Pw(x)dx
i=2 j=1
+chtp/ [M—Fin’l(w)] (a+1/q)p w(a)ds

=2 j=1 (% —00,00)

< c/ o (Fsz)Pw(x)dx 4 ctPw(Q) < c/ o (Fsx)Pw(z)d.

Condition (iv) is a consequence of condition (iii) and Lemma 3.6. As for
condition (v), it follows from conditions (iii) and (iv).
Now we will prove (vi). We consider a point z¢ ¢ €2, such that

Z ©i,5; 20) + N 0 (01;20) < 0.
i>1,5

Since 0;;(y) and 61(y) are the representatives satisfying N, (0;j;20) =
ng o (0i4;0) and N, (©1;20) = n,,(01;20), by Lemma 3.6,

= niixs W) (f) = P(xig,y) + xn @) (f(y) — Pb1,y))

i=2 j=1
is a representative of © and therefore
) = { Do Dot ni,j(y)XIi(y)P(fUijjay) + x5, (y)P(b1,y)) if z € Q,
fly) itz ¢ Q,
is a representative of G = F' — ©. Thus, by Lemma 4.2 N/ (G;z) < ct. =

9(y

Proof of Theorem 2.1. The method that we will use to prove the the-
orem it was developed in [4]. Proceedings as in [4] we can show, as a conse-
quence of Lemma 4.3, that if H is an element of E; satisfying N;a (H;z) <1
and [ NS, (H;z)"w(z)dz < oo, for some 0 <7 < p <1, (a+1/q)r > 1 and
such that w € A(a+1/q)r
sequence of p-atoms {A;} of HY'd (w) such that H = 32 \A; in HES (w).
Moreover, Y [Ni|” < [ N, (H; z)"w(z)dz.

From this fact, the proof of theorem can be obtained following the same
lines of the proof of the Theorem 4.3 of [4]. m

then there exists a numerical sequence {\;} and a

In order to prove Corollary 2.2 we will need the following lemma.

Lemma 4.4. Sea I = (—o0,b). There exists a sequence {v;}5-
functions satisfying the following conditions

1) 0< vj(e) < Land 3, 15(2) = X(_oop)(@).

of C§°

’]_700



2) For each integer j, if we denote I; = [-279 + b, —27972 4+ b] then
supp(v;) C I;. Let rj = %, then for every x € I; , 7; <b—x <crj.

3) the number of interval I; that intersect to other interval I} does not
exceed two.

4) If k is an integer, k > 0, we have

’Dkuj () ‘ < Ckrj_k

where C}, does not depend on j.
See [6], pag. 167

Lemma 4.5. Given a p-atom A in Hyd (w) there exists a numerical se-
quence {p}, and a sequence of p-atoms {An} in HY& (w) with bounded
associated intervals, such that

(41) A= Z,ukAk in EY; and Z |l < C,
where C' is a finite constant not depending of A.

Proof. If there exists a bounded interval associated to the p-atom A the
result is immediate. Then, we assume that w ((—oo, b)) < 0o, where (—o0, b)
is an interval associated to p-atom A. Let a(y) be the representative of A,
such that supp(a) C I = (—o0,b], and we denote P(x,y) the polynomial
of degree at most N, such that N (A;xz) = N} (a(y) — P(x,y);x). We
observe that N (A;b) = 0 and P(b,y) = 0. We consider the sequence of
functions {v; };’;_ , of Lemma 4.4 associated to interval I = (—o0,b). Then,

by condition (1) of Lemma 4.4

o0

(42) a(@)= Y vi(@a@)= Y 6;(x)

j=—o00 j=—o00
For each integer j, we denote ©; the class in E, of the function 6;(z) =
vj(xz)a(xr). We claim that
(43) NS (©5;2) < Cw(I)~Y? for all z,
where C' does not depend of j. By (2) of Lemma 4.4, supp(v;(y)a(y)) C I; =
[-277 +b,—279"2 4+ b]. Then, N, (0;;z) =0 if 2 > 27772 + b. Now, we
suppose that z < —279724b. For this case, since P(b,y) = 0 and by Lemma
3.3 we have

D*P(z,y)| = |DF [P(e,y) = P,y)]| < cw(D)™2(ly = al + b= yl)* 7",
Taking into account this estimate, the conditions of Lemma 4.4 and pro-

ceeding as in the proof of (i) in Lemma 4.3, we obtain (43) For each integer
7, we define

L (wI) NP —
pi = C < w([) > and aj(y) = Hj 19j(y)7

where C' is the constant in (43). We denote by A; the class in E%; of a;(y).
Then, by (43), we have N/ (A;;x) < w(I;)~'/? and supp(aj) C I;. Then,
the classes A; are p-atom in Hhd (w) with bounded associated intervals.
Using (3) of Lemma 4.4, we get 372 |u;|” < C. Tt is not difficult to show



that the norm in H%% (w) of a p-atom is bounded by a constant C' not
depending of the p-atom, then we have that

o0 [e.e] o0
Z HMJA]H?‘(EZI;(’LU) = Z ’Iu]|p HA]H?;_[‘I;:;L-(,W) S ¢ Z |lu.7‘p < 00.
j=—00 j=—00 j=—00
Thus, by Corollary 3.7 there exists F in Hb' (w) such that F' = Do A
in H5'4 (w) and by Corollary 3.5 F = D e oo HiAj in EY;, and by (ii) of
Lemma 3.6 and (42) we have that F = Ain Ef,. =

Proof of Corrolary 2.2. By Theorem 2.1, we have
F=) MAyin BY, and Y |\’ < c\|F|y§13,+(w) .
k , O

Now, applying Lemma 4.5, we can express each p-atom Ay as
Ap =)k jAry in B, where Y | lP < C,
J J
and the associated intervals to the p-atoms Ay ; are bounded. Then,

F = Z Z etk jAg,j in EY, and

k J
5050 Pkl < SN sl < Ol < C -
J

J
]

Lemma 4.6. Let f € D'(r_o,00), and we suppose that DN1TLf = 0.
Then f agrees with a polynomial of degree less than or equal to N + 1 in
D' (2—x0, ).

This is well known and we will be omitted its proof.
The following lemma proves the first part of Theorem 2.3.

if

Lemma 4.7. Let w € AT and (a+1/¢)p > s> 1 or (a+1/q)p > 1
) then

s =1, where 0 < p <1, and let v > a. If a(y) is a p-atom in HY _(w) t
HPa“HHg’;;(w) <C,
where C' is a finite constant not depending on a(y).

Proof. Without loss of generality, we can suppose that z_, < 0 and
supp(a) C I = [0,b]. Let € (z_00,00) and z > 0. As in(11) of Lemma
3.11, we define

R(z,z) =
1 > a— © a—1—
F(a)[/m (y—z—2) 1a(y)dy—/m (kz_ock,a (y — 2)* " 2F)aly)dy ).

We suppose that x < —4b. We observe that if there exists x € (x_q, 00)
such that z < —4b then d(z_~,I) > |I| = b, therefore a(y) has vanishing
moments up to order v — 1 and since v > o = N + 3, we have that a(y) has
vanishing moments up to order N. We will prove the followings estimates



(iii) If z > |x| and |z + z| < 2b then

IR(z, 2)| < Cw(I)~ 1/p<|b|>a a

Let us consider (i) . We get that

R(z, 2 / y—x—2)" cha — )R Ra(y)dy

Z ka/ y—x)" 1_ka(y)dyzk:R1+R2.

Thus since = + z S 0 and supp(a) C [0,b], it follows that Rs vanishes. As
for Ry, by Taylor’s formula and Lemma 3.12, we have that

3 pN+2
’R]_‘ S ’DN_"lPaa(x - 92)‘ ZN+1 S C’U}(I) l/meN—i_l
]
a+1 N+1l—-«a a+1
< Cw(I)~YVr b = 2% < Cw(I)~/P b 2%,
[] || |z

which implies (i).
We observe that

N
(44) R(z,2)| < |Paa(a +2)| +C Y ]kaaa(x)) o
k=0

Then, if z > @, by Lemma 3.12, we obtain

. . y pN+2 k Uy (b a+1
— — a
(45) ‘D Paa(x)’ 2" < cw(I) pWT_B <cw(I)~/P <|5L”> 2%,
In case (ii), i.e., when |z + z| > 2b, applying Lemma 3.12 with k& = 0, we get
bN+2
|Paa(z + 2)| < Cw(l) VP ——,
|z + 2|

and thus (ii) holds. As for (iii), we have that |z + z| < 2b, then it follows

that
b

Paa( + 2)] < C ]l / ly— 2 — 2"V dy < Coo(I) /7,
Ttz

therefore, since ‘ > 1/2, we obtain

Paa(z + 2)] < Cw(1)~V? (b>a oy

]

Then, from (44), the estimate above and (45), we get (iii).



Taking into account (i), (ii) and (iii) and arguing as the proof of Theorem
1 in [3] we obtain that for x < —4b
(46)
b

a+1/q
Ny (Paa;z) < Cw(I)~HP (\x!) < Cw(I)~P (M+X](x))a+1/q
holds. This estimate also holds if z > b, since Pya(z) = 0 for x > b. If

—4b < 2 < b, by Lemma 3.11, and since |ja||,, < w(I)~'/?, we get
(47) N/ (Paa;z) < Cw(I)~H7.

Since M*xy(z) > 1/5 if x € [—4b,b), it follows that (46) holds for every
Z € (X_o0,00). Then, the lemma follows from (46) and part (2) of Lemma
3.1. If d(x—_0, I) < |I] the conclusion of lemma follows from (47) and part
(3) of Lemma 3.1. m

Proof of Theorem 2.3. The first part of theorem follows from Theorem
1.2 and Lemma 4.7.

Now, we suppose that « is a natural number. Then, if a(y) is a p-atom
in HY _(w), it is not difficult to see that

(48) D*Pya(z) = (—1)% a(x).

We will study the application D® in Hb'd (w). Let F € Hid (w). Since
N} (F;z) € LP (w), N, (F; ) is finite almost every point € (2o, 00);
we consider a point x in this conditions and Let f be the representative of
F satisfying N, (F;z) = n},(f;2). Let ¢ € ®,(z) and we suppose that
supp(¢) C Iy = [x,c]. Then, by the definition of D®F', taking into account
that o <« (then ¢ € ®,(z)) and applying the Holder’s inequality, we obtain

(DF,6)| = |(D*F, )| = |(f, D¢)| = /I F(y)D°(y)dy
¢

y)D%(y)dy\ < wﬂ [ 1swlay

1 1 c q >1/q +
— d Ny o(Fix
< o (g [ 10l ay) < 8juria)

Therefore (D*F)’, _ (z) < N, (F;x), which implies that
(49) HD“FHHP L) S Ity

We denote P »f the extension of the first part of Theorem. We will prove
that P, is onto. Let F € H2% (w), by (49) D*F € HY _ (w), then by
Theorem 1.2 we have that

(50) DYF = Z)\ aj, where Z NP~ yDaFH
Then, if we denote f = (=1)">_; Aja;, that belongs to Hﬁﬁ (w) we get that
(51) ZAPaJGHer( ).

As consequence of Lemma 4.6, we have that D is one to one. From this
fact, (51) and (48) we obtain that P,f = F. The fact that P, is one to one
is consequence of Theorem 1.2, (49) and (48) m



We observe that the last Theorem, its proof and Theorem 1.2 give other
proof of the Theorem 2.1, always that « is a natural number.

To finish, we will observe that in general, in the case that a is not a
natural number, the extension P, is not onto. We suppose that 0 < a < 1,
w=1,and (o +1/q)p > 1. Let ¢ € C§°, and we assume that [¢| > ¢ > 0 in
some interval. We define

alw) = o(a) [ ST

n=1
It is well know that the previous series defines a Lipschitz-a function (e.g.
see [9]), then a(x) is a Lipschitz-a function. If we denote by A the class of
a(z) in Ef, we have that N, (A;x) is bounded and since supp(a(y)) C T

for some interval I, we get that A € H74 (1). However, It can be shown

that does not exist any distribution f in HY _ (1) such that A = P.f.
We would like to thank C. Segovia for his help and encouragement
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