BOUNDEDNESS OF THE WEYL FRACTIONAL
INTEGRAL ON ONE-SIDED WEIGHTED LEBESGUE AND
LIPSCHITZ SPACES

S. OMBROSI AND L. DE ROSA

ABSTRACT. In this paper we introduce the one-sided weighted spaces
L5(8), =1 < B < 1. The purpose of this definition is to obtain an
extension of the Weyl fractional integral operator I} from LF, into a
suitable weighted space.

Under certain condition on the weight w, we have that £ (0) coin-
cides with the dual of the Hardy space H (w). We prove for 0 < 8 < 1,
that £, (3) consists of all functions satisfying a weighted Lipschitz con-
dition. In order to give another characterization of £5(8), 0 < 8 < 1,
we also prove a one-sided version of John-Nirenberg Inequality.

Finally, we obtain necessary and sufficient conditions on the weight
w for the boundedness of I} from L?, into £, (3),—1 < # < 1, and its
extension to a bounded operator from L (0) into L ().
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1. NOTATIONS, DEFINITIONS AND PREREQUISITES

Let £ C IR be a Lebesgue measurable set. We shall denote its Lebesgue
measure by |E| and the characteristic function of E by xg.

As usual, a weight w is a measurable, non-negative and locally integrable
function defined on IR.

Let w be a weight. Given a Lebesgue measurable set £ C IR, its w-
measure will be denote by w(E) = [, w(t)dt.

Let 1 < p < oo. The weight w belongs to the class A, if there exists a
constant C' such that

1 a+h a 1 p—1
sup / w(z)dx </ w(x)Pldx> <C,
h>0 hp a a—h
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2 WEYL FRACTIONAL INTEGRAL

for all real number a. In a similar way, w belongs to A; if

1 a a+h 1 p—1
sup / w(x)dx (/ w(w)_fﬂldac>
h>0 hp a—h a

for all real number a. The class A| is defined by the condition

1 a+h
sup [/ w(:v)dx] < Cw(a),
h>0 h a

<G,

for almost every real number a. The weight w belongs to Af if

a
sup [1/ w(m)dm] < Cw(a),
h>0 LI Ja—n
for almost every a. These classes A, and A;; were introduced by E. Sawyer
n [12]. We recall three basic results on these weights.

(i) For 1 < p < oo, a weight w belongs to A, if and only if w? belongs
to A;C, where %—l— ]% =1.

(i) If 1 <p < g < oo, then Ay C A, .

(iii) If 1 < p < oo and w belongs to A, then w belongs to A,_, for some
e > 0.

The proof of parts (i) and (ii) are very simple and (iii) can be found in
Proposition 3 in [3].

In the sequel, for each bounded interval I = [a,b] we shall denote I~ =
l[a —|I],a] and It = [b,b+ |I]].

Let 1 < ¢ < 0o. A weight w satisfies the condition RH~(q) if there exists
a constant C' such that for every bounded interval I,

We shall say that a weight w belongs to D™ if there exists a constant C
such that for every bounded interval I,

w(I UTT) < Cw(I).

It is well known that if w € A, 1 <p < oo, then w € D™.
Let w be a weight, 1 < p < co and f a measurable function. We shall say

that f belongs to L%, if
> [1f(@)[]”
—
1= [ LN o

is finite. The function f belongs to ig, if

{xeﬂ%:wx)'>t}‘

[f]]];w = sup tP
t>0

is finite.
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Let 0 < a < 1. Given f a measurable function on IR, its Weyl fractional
integral is defined by

[ fy)
IFf(x) = / s,

_ x)l—a

whenever this integral is finite.

In the sequel, the letter C' will denote a positive finite constant not nec-
essarily the same at each occurrence. If 1 < p < oo then p’ will be its
conjugate exponent, that is, 1/p+1/p’ = 1.

Let w be a weight and —1 < 8 < 1.

Definition 1.1. We say that a locally integrable function f defined on IR
belongs to L.,(3), if there exists a constant C such that

e ) = v < c.

for every bounded interval I, where fr = ﬁ [; f. The least constant C will

be denoted || fl|z,,(s)-

The spaces L,,(3) were introduced by E. Harboure, O. Salinas and B. Vi-
viani in [1]. They are a weighted version of the spaces L), for p = 1,
defined by J. Peetre in [8]. If w belongs to A, 1 < ¢ < 2, then £,(0) is the
dual space of the one-sided weighted Hardy space H! (w), see [10] and [11].

Definition 1.2. We say that a locally integrable function f defined on IR
belongs to L,((3), if there exists a constant C such that

1
e 1 = iy < ¢,

for every bounded interval I. The least constant C' satisfying this inequality
will be denoted Hf”ﬁ;(ﬁ)'

In the following definition, we consider a one-sided version of the classes
H(a,p) defined in [1].

Definition 1.3. Let 0 < a <1 and 1 < p < oco. We say that a weight w
belongs to H™ (c, p) if there exists a constant C such that for every bounded
interval I = [a,b], the inequality

’ 1/79,
1_, o0 w(y)P w([)
I +1 / d <c
oy [b @—awﬂw'4 -

holds.
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2. STATEMENT OF THE MAIN RESULTS

Lemma 4.1 part (iii) shows that if w belongs to H™ (a, p), 1 < p < oo, then
w belongs to D™ and therefore £,,(3) C L,,(3) for every §: —1 < < 1.
The next theorem states that w belonging to D~ is a sufficient condition for
the equality of these spaces, whenever 0 < 3 < 1.

Theorem 2.1. Let 0 < 3 < 1 and let w belong to D~. Then, the spaces
Ly(B) and L,(B) are equal, and their norms are equivalent.

The next theorem gives us a characterization of the spaces L, (53), 0 <
B < 1, whenever w belongs to A, . In the case 5 = 0, we shall prove this
result using Proposition 3.6, which states a one-sided weighted version of
John-Nirenberg Inequality.

Theorem 2.2. Let 0 < <1 and 1 < p < oo. Let w be a weight such that
w belongs to A, Then, f € Ly(B) if and only if there exists a constant C
such that

(21) [ 18@) = frs ruta)rde < Cutrl1,
.
for all bounded interval I and every q:1<q <p',q < oc.

The following two theorems state a sufficient and necessary condition on
the weight w to obtain extensions of I} defined on certain spaces.

Theorem 2.3. Let 0 < a < 1,1 <p < oo and f = a —1/p. The following
statements are equivalent.
(i) The weight w belongs to H™ (c, p).

N(ii} The operator I} can be extended to a linear bounded operator I} from
LY, into L,(B) by means of

(2.2) I3 (f)(x)

T f(y)dy /oo [ 1 1= Xpaoz011] (%)
A Vhut SRS _ .
x0 ’y - ‘I|1_Oé T ’y - 1;’1—04 (y — xo)l—a f(y) Y

for an appropriate choice of xy € IR.

0

(i11) The operator I} can be extended to a linear bounded operator E
from L%, into L,(3), where I is defined as in (2.2).

Theorem 2.4. Let w a weight and 0 < a < 1. The following statements
are equivalent.
(i) w e H (o, 00).
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(i1) The operator I} can be extended to a linear bounded operator
I : L,(0) — Ly(a) by means of

HOCE N [X[zm(y) Xeoo) (9)

ly =o'~ |y —allm®
for an appropriate choice of xg € IR.

f(y)dy,

—00

Remark 2.5. Let 1 <p < é and f=a—1/p <0.
(i) It is easy to see that if w belongs to RH‘(%), then Ly"/? € L (5).
(ii) By Lemma 4.4 in [9], if w® belongs to Ag
condition RH~(p'), and taking into account that ﬁ < p/, it follows that w
belongs to RH‘(ﬁ).

(iii) Theorem 6 in [4] states the fact that w? belongs to Ag iy ds a

then w satisfies the

necessary and sufficient condition for the boundedness of I} from L%, into
L7 C £,(8).

(iv) If w? belongs to A:ﬁpurl’ T
to H™ (a, p). However, there exist weights w belonging to H™ (o, p) such that
w? does not belong to A;,H, for example, w(x) = |z|Y for —f <~y <1-0,
see Remark 4.5.

In consequence, if —1 < 3 <0 and w” belongs to A:ﬁp’-‘rl’ the extension
of It in Theorem 2.3 can be obtained from Theorem 6 in [4]. But, (iv) shows
that Theorem 2.3 can be applied to a larger class of weights.

since wP' € A we have that w belongs

Remark 2.6. Let w be a weight. We shall say that a locally integrable
function f defined on IR, belongs to MW ~(w) if there exists a constant C
such that
! 1 dy < C
!I|658mfIM/1|f(y)_fI’ y= G,
for every bounded interval I.

(i) By Definition 1.2, it follows that MW~ (w) C L,(0). Moreover, if
w belongs to Ay then L,(0) € MW~ (w), and as a consequence of Theo-
rem 2.1, L£.,(0) = MW~ (w).

(ii) Following the same lines of Theorem 7 in [7], it can be seen that, in
the case a = 1/p, the weight w? belongs to A7 if and only if the operator
It is bounded from L%, into MW~ (w). Also see [2].

(i) If w? belongs to Al then, by Remark 4.3, w belongs to H™ (a, p).

In consequence, the fact that w?’ belongs to A| implies the boundedness
of I} from LY, into MW~ (w), is contained in Theorem 2.5.

3. THE SPACES L, (3) AND L (8)

The next lemma will be used in the proof of Theorem 2.1.
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Lemma 3.1. Let —1 < 8 < 1, f a locally integrable function defined on IR,
and w € D™. The following statements are equivalent.

(i) f € L,(P).

(ii) There exists a constant C such that for every a € IR and h > 0,

1 ath
w(la — h/2,a)hP / 1f(¥) = flatn/zarmldy < C.

(iii) There exists a constant C' such that for every a € IR and h > 0,

1 a+h
w([a — h/2,a])h? / 1f W) = fla+natsnldy < C.

The constants C in (i) and (iii) are equivalent to Hch;(ﬁ)'

Proof.
(i) = (7). Using (i) and taking into account that w € D™, we have

a+h/2
/ |f(y) - f[a+h/2,a+h] |dy

a+h/2 a+h
< / |f(y) — f[a+h/4,a+h/2]|dy + 2/ |f(y) — f[a+h/2,a+h] |dy
a a+h/4
a+h/2 a+h
< 310 = faarngaldy+5 | 1 O~ Fisngarnldy

< Olfll oo ywlla—h/2,a)h + Clfl oo gywlla — h/2,a+ h/4)h?

< Olfll g ggywila—h/2,a)h’.

From these inequalities and using (i) again, we have the estimate

a+h
/ |f(Y) = flath/2.040)|dy

a+h/2 a+h
= / |f(y) — f[a+h/2,a+h] |dy + / b2 |f(y) — f[a+h/2,a+h} |dy
a a+

< Olfll o ggywlla — /2, a)h° + | fll o syw(lasa+ h/2)H?

< Olfll gy pwila — /2, a)h?,
which shows that (ii) holds. In a similar way it can be proved that (ii) =
(iii) and (iii) = (). O
As we have already mencioned if w belongs to D~ then, for every —1 <

B < 1 we have the inclusion £,,(5) C £, (3). In order to prove Theorem 2.1,
it will be sufficient to show that L£,(8) C L (5).
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Proof of Theorem 2.1. We suppose that f € £,,(8). Let a € IR and
h > 0. For each j > 0 we define a; = a + h/27. Then,

(3.1)
a+h/2 o0 aj
/ |f(y) — f[a+h/2,a+h]‘dy = Z/ |f(y) — f[a+h/2,a+h]‘dy
a j=1

aj+1
e a; e h
< Z ‘f(y) - f[aj,ajfl] ’dy + Z ﬁ’f[aj,ajfl] - f[al,ao]’
j=1v%+1 Jj=2
=14+1I
Taking into account that for each j > 2,
27 [aj-1
| fraj,05-1) = far,a0l < h/ |f — fla+h/2,0+h]]
aj

it follows that,
0 1 aj—1 1 a+h/2
ESY 2/ \f = flatn/2z.asml = 2/ |f(Y) = flarns2.arnldy-
j:2 aj a
Then, by (3.1)

a+h/2
(3.2) / FW) — Fasnpasnldy < 2I.

Now, using part (iii) of Lemma 3.1 and keeping in mind that 3 > 0 we have
that,

00 h Jé]
(3.3) I< CZ (23> w([ajr2,aj41]) < ChPw([a,a + h/4]).

j=1
From (3.2) and (3.3), and taking into account that f € £ (53), we get

a+h
/ 1f(Y) = flarns2.aemldy
a+h/2 a+h
— [ U0 = Swnparnlds+ [ 176 = facnzasnldy
a a+h/2
< ChPw([a,a + h/4]) + ChPw([a, a + h/2])

< Chﬁw([a, a+ h)).
Therefore,
a+h a+h
/ W) — fraarnldy < 3 / F @) — frasnjrasnldy < Chow((a,a + 1),

which shows that f € £,(3). O
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Remark 3.2. Let —1 < < 0 and w(t) = e~'. The weight w belongs to AT
however, we only have the strict inclusion L.,(3) C L,,(3). For example,
given a > 1 we consider the function

e” ™  t>0
ro={ " 120
We observe, using Remark 2.5 part (i), that f € L,(5). On the other hand,
1 h 1 1 — e—ah e—ah
P _ — _ 1— —ah
i Jy V¥~ el = ey [ e
_ (1 _ efah)Z
Rl —eh)a’

which tends to infinite whenever h tends to infinite. This implies that

& Lu(B).

The next proposition will be used in the proof of Theorem 2.2.

Proposition 3.3. Let 0 < 8 < 1 and let w belong to D~. Then, f € L,(5)
if and only if, there exists a constant C such that

(3.4)

[f(@) = flyl <C

oo ly—zl ly—z|
/+ T_wE) dz+/y+ T_wlE) g,
» (2 —x)t=F y (z=y)=7 |’

for almost every real numbers x and y.

Proof. We suppose that f € £, (3). We shall show that for every h > 0
and almost every x,

x+h/2 w(z)
(3.5) 1£(®) = fiotn/zan)] < C/x mdz'
For each i > 0 let x; = x 4+ h/2°. If = is a Lebesgue point of f we have that,

(3.6) |f(z) — f[x+h/2,:}c+h]‘

< |f(33) - f[xi+1,azi]| + |f[xi+1,a}i] - f[xhzo”

S |f(‘r) - f[mH—hwiH + Z |f[$j+1,.’ﬂ]'] - f[xj,wj_1]|
j=1

o
= Z fiagirws) = Tyl
j=1
For each j > 1, since f € L,,(/3) we obtain

1
. 7 — o <
’f[%ﬂﬂfa] f[%v%fﬂ’ = C(l’j+1 — ;1)

raw(lzjin,zia]).
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From this inequality, (3.6) and taking into account that w € D~ we get,

7() - w%m%m|<c§j/' =

Tj+1

z+h/2 w(z)
— < =
C/ z—xl de C/ z—x)l_ﬁdz’

which shows that (3.5) holds. Let x < y two Lebesgue points of f. By (3.5)
we have that,

(3.7)
@) = W < (@)~ sy |+ 1 0) ~ Fyprme yoyny)

Hfjesu ) = fyroze i o)
ly—=z|

T+ w(z) vt w(z) »
SC[L e e

Hlfjesu ) = fyroze yyay -

From the hypotheses f € £,,(8) and w € D™, it follows that the third term
on the right hand is bounded by

C y+(y—z)
/x ) = frar g2 s gy |

L
(z+y)/ w z)
Therefore, by (3.7) we have that (3.4) holds.
Conversely, given a real number a and h > 0, by (3.4)
a+h
(33 /‘|ﬂm—mﬁmw
a+h a+h pry+ ly—zl
w(z) 2 w(z)
<C / / ——FG—=dzdr + / / ————=dzdy| .
)1 ﬁ a Yy (Z - y)li’g

Changing the order of integration and taking into account that w € D™, it
follows that (3.8) is bounded by ChPw([a,a + h]). This completes the proof
of the proposition. O

The next two lemmas will be needed in the proof of Propotition 3.6.
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Lemma 3.4. Let w € D~ and f € L4(0). Given two intervals I C J the
inequality

1
— — —u <cC
w(J) /J’f frelxr-ur < Clfllzo (o)

holds with a constant C' only depending on w.

Proof. Let I = (a,b) and J = (¢,d). We consider a = max{a — |I|, ¢}
and 8 =b+|I|. Since JN (I~ UI) C («, 3) we have that,

1 1 p
(3.9) w(J)/J|f_fI+|XI—UI < w(J)/a \f — fr+]

1 0 (8 —«a)

We observe that (6 — «) < 3|I|, which implies

4 B
39 < s / 1 frap)

From the hypotheses f € £,,(0) and w € D™, and taking into account that
(a, 8) C JUJT, (3.9) is bounded by
4
m”f”z:w(o)w((@,ﬂ)) < Clfll 2w

as we wanted to prove. O

Lemma 3.5. Let 1 <p < oo and w € A, . Then, there exists a constant C
such that for every 8 > 0 the inequality

_ i+
(3.10) w{z el rwx)<p}) <C [ﬁw(l+) w(l™T),
holds.
Proof. This lemma is a simple variant of Lemma 3.1 in [6]. O

The following proposition is a one-sided weighted version of John-Nirenberg
Inequality. For its proof we shall use the method employed in Theorem 3 in
[6] and the techniques of Lemma 1 in [5].

Proposition 3.6. Let f belong to L£,,(0). Then,
(i) if w € A] there exist positive constants Cy y Co such that for every
A >0,

w{z € I+ |f(2) — frelw(@)™ > A}) < Cre= @M W lewow(17)

holds for every bounded interval I.
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(ii) if w € A, ,1 < p < oo there exists a positive constant C3 such that
for every A > 0,

w(fe € I+ f(@) — frelw(e)™ > A} < 5 (L4 M fll o) ™ w(I)
holds for every bounded interval I.

Proof. Without loss of generality we can suppose that || f||z, ) = 1. For
each A > 0 and each bounded interval I, let

AN =w({z € I | f(z) = frefw(z) ™" > A}),

and

(3.11) A(X) = sup

where the supremum is taken over all f : ||fllz, ) = 1, and all bounded
interval I. Thus, for every A > 0, we have that A(\) < 1.
By Lemma 3.4 there exists a constant u satisfying

(3.12) w(lj)/J\f — frelxr-ur < wy

for every bounded intervals I C J and every f : | f|z, ) = 1.
Fixed I = [a,b], let s > p and
Oy = {x: My (If = freIxr-urw™")(@) > s}.

Since €25 is an open set, we can write Q5 = U;>1.J;, where the J!s are its
connected components.

We observe that if J; NI~ # @ then J; N IT = . In fact, suppose that
JiNI~ # 0 and let J; = (o, 8). If B > b a simple variant of Lemma 2.1 in
[12], shows that

b
p<s< M/ |f = frelxr-ur-

However, using (3.12) we have that

1 b
w((ab))/ |f = frelxr-ur < pe
In consequence, 3 < b and J; N IT = 0.
Let {J; : inI~ # 0} = {H;}i>1. For each 1,
1

By Lebesgue’s Differentiation Theorem with respect to w for almost every
rxel™ \ UiZIHia

(3.13) H; CI"UI and

1f(2) = fre|w(z) ™! < s.
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Using (3.13), (3.12) and keeping in mind that w € D™, we have that

10 Swwy =3 [ Ar- gl 15

i>1

1 1

Fixed H; = (a;,b;) we define the sequences (z)r>1 and (yg)r>1 by b —
zr = 2(b; — yx) = (2/3)*|H;|, and the intervals H;y = (zx,yx). Therefore,

1
(315) H; = H, ) / |f7fI+|§57
i kL>Jl i,k ’LU(H:}C) Hj—k
and
f(@) = frelw@) ' <A aexel \|JH,
ki
Then,

AN <Y w({w € Hy | f (@) = frelw(@) ™ > A}).
ik

If p <s<Xand 0 <~y <A, we have that

(3.16)
AND) €3 w(fa € Hy, : |f(2) — fpr [w(@)™ > A=)
ik ’
P wl{e € B 1y, — frelu()™ > 7))
ik
=I1+1I
From (3.11), (3.15) and (3.14) we obtain the estimate
(3.17) 1< A = w(H) = AN —2) S w(H)
< Gl 40— (1),

s
On the other hand, (3.15) implies that

H;k|

1
(318) s~ il < e [ 1f = il <
If w € Ay there exists p > 1 such that for every i,k and almost every
T < Hijk,
|H,

< pw(x).
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Then, using (3.18) we have
|le+k — fr+| <p sess infer;kw(x).
In consequence,

wiz € By fyps — frelo@@)™ > 4})

_ ps .
<w({z € H;, 1 w(z) < p ess mfer;,kw(m)}).

Choosing s = 2uCy y v = ps, if A > v we have y < s < A and II = 0.
Then, from (3.16) and (3.17) we obtain that

that is, if A > 7,
1
A < SAMN - 7).

Now, proceeding as in Theorem 3 of [6], it can be obtained part (i) of this
proposition.

In order to prove part (ii), we suppose that w € A;,1 < p < oo. Using
(3.18), Lemma 3.5 and taking into account that w € D~

w({z € H;, - |fH;Fk — frelw(z) ™t > 7}

s w(H;) s w(H) |H, | 4
<w re H , wlx) < — : <C |- : : w(H; g,

(2) v
<C|—-) w(H ).
v i,k
By (3.15) and (3.14), we have

s v s v sP'—1

I1<C <) > w(H)=C <> > w(H;) < Cp~——w(I7).

Tk 7 v i e

Then, (3.16) and (3.17) imply that
AN —~n) st _
AN I) < Cp T T w(l™).

From this inequality, part (ii) follows as in Theorem 3 of [6]. O

Proposition 3.7. Let 0 < 8 <1 and 1 < p < oo. Let w be a weight such
that wl+%p belongs to A,. Then, f € Ly(B) if and only if there exists
a constant C such that (2.1) holds for all bounded interval I and every
q:1<q<p'/(1-p)
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Proof. Suppose that (2.1) holds for every ¢: 1 < ¢ < p’/(1 — 3). Taking
g = 1 it is easy to show that f € L£,(3). Conversely, let f belong to L ().
We observe that it will be sufficient to consider ¢ = p'/(1 — /3), because
from this case and applying Hélder’s inequality we obtain (2.1) for every
1 <q<p'/(1-p). Given a bounded interval I and using Proposition 3.3,
we have that

(3.19)
_ 1 I _
[ 10@ = frrutayae < [ [ 1@ - 1] o

ly

vo[ L e v w(z) ’
<C ]Eu(az) [|[+| . (/$ (z—x)l—ﬁdz+/y (z_y)l_ﬁdz)dy] dx
:E—&—M “
-4 ’ 711}(2) 2z x
<C Iﬁw(x)l (/x (Z_$)16d> d

el P () !
+!f+|q/1—w(x) </1/ <z—y>1-ﬁdZdy> "

= A+ B.
If we denote J = I~ U T UIT then we have the estimate
A< C/ )= qI+ (wxy)(x)dz.

Our hypothesis wHWp € A, is equivalent to

/

1-:25 +
(3.20) w 1P e A,
where p/ =1+ % and 1 = % + 3. Then, by Theorem 6 in [4] it follows that

A<C </_Zw(:c)‘5|w><](x)18dm> " C </Jw(x)s/qu) q/s.

Since q/s = qB+1 > 1, applying Holder’s inequality and taking into account
that w € D™ we obtain

(3.21) A< C/ z)dx |J|5 7 < Cw(I7)|1]7.
Let us estimate B. If we set J' = It UITT UIT"T", then

< o v ([ o) @

Applying Hélder’s inequality,

uf‘q </1 w($)1_qu> </1+ w(y)dy) " /1+ w(y) U (wx) (y) da.

B <
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From (3.20), it follows that w'~? € A then, we have that

B<C | wy) "y (wx)(y)ide.

It

Proceeding as in the estimation of A and taking into account that w € D~
we obtain

(3.22) B < Cw(I7)|1)%.

As consequence of (3.19), (3.21) and (3.22) we get (2.1) and the proof of
this proposition is complete. O

Proof of Theorem 2.2. We shall prove that f belonging to L, (03)
is a sufficient condition for (2.1) holds. The fact that (2.1) is a necessary
condition follows as in the previous proposition. For that, we shall consider
different cases.

First of all, we assume that § = 0 and f € £,(0). If w € A] we
have that (2.1) is an immediate consequence of Proposition 3.6 part (i). If
w € Ay, 1 <p < oo, we have that w € A, for some € > 0. Then, by

Proposition 3.6 part (ii), and proceeding as in Theorem 4 of [6], we obtain
that f satisfies (2.1).
Let 0 < 8 < 1land 1 <p < oo. Since the weight w belongs to A, there

exists 0 < o < (3 such that witTa? belongs to A . Proceeding as in (3.19),
we have that

[ 1#@) = s fruta)odo

ly—=| ly

g L T+ w(z) 3 y+ ~gac| w(z) . q )
¢ [uﬂ " </ e L M e )dy] !
- 3|1| q
< C|1|P=)a /_ w(z)™a (/ T (zfj(:))l_adz> dx
C 'T !
+|I|(ﬁ—a—l)q /I (/ﬁ/y dZdy> o

= [1"~*)9(A + B).

Substituting in the proof of the previous proposition « for § in the estimation
of A and B we obtain this case.

Finally, we suppose that 0 < § < 1 and p = 1. Since the weight w belongs
to Ay it follows that w belongs to A for every 1 < s < oco. Then, by the
previous case we obtain that (2.1) holds for every 1 < ¢ < oo. O



16 WEYL FRACTIONAL INTEGRAL

4. THE CLASSES H™ (o, p)

The next lemma states necessary conditions for that a weight w belongs
to H™ (o, p).

Lemma 4.1. Let 1 < p < co. If w € H (a,p) then,
(i) w” belongs to € D™,
(it) w belongs to € RH(p'),
(i1i) w belongs to € D~ .

Proof. The proof of parts (i) and (ii) are similar to ones of Lemma 3.7
and Lemma 3.8, in [1], respectively. Applying Hélder’s inequality and (ii),
we obtain (iii). O

Lemma 4.2. Let w be a weight. The following conditions are equivalent.
(a) we H (. p).
(b) w e RH™(p') and there exist positive constants C' and € such that,

w” ([a, a4 0t]) < COC=W =< ¥ ([a,a + 1)),

for everya € IR, t >0 and 6 > 1.
(¢) There exist positive constants C' and € such that,

/ 1/p
(wp <[a,a+9ﬂ>> < cprti-a—y wlla—t.a)
ot - t ’

for everya € R, t >0 and § > 1.

Proof.

(a) = (b) : By Lemma 4.1 (ii) we have that w € RH—(p’).

Let I = [a,a + t]. Applying Hélder’s inequality and keeping in mind that
w € H (a,p),

wy WD <w<f>>f”zc|f|<;-a+npf /a‘” e

1] N 1] +t (y — a) =
(L—at1)p 1 a+2" e
> ¢l etbr / P du.
- ‘ ’ P Z (2k+1t)(2—04)17/ a+2kt w(y) y

k>0
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i k
Since ;> (2(2_71(@;/) =C (2(2_170%,) , by (4.1) and applying Fubini’s The-
orem,

/ k+1 %
wP (1) (Loat1)y 1 at2"T / 1
— > C|I|'» P o w(y)? dy I

1] 2= ,;) at2kt ; 2(2—)p

= C!I!(%*aﬂ)plzgl Zi / Mkﬂtﬂ)(y)p’dy
i>0 (2i0) @ = Saons
1 , 1 a+2tt1¢ ,
= C]I|(57°‘H)p —_— ,/ w(y)P dy.
; (208) 2" [y
Therefore,
wp/ (I) (l,a+1)p/ 1 a+2t+1¢ ,
TS - p
i 2 T L, W
. : 27w ([a,a + s]) ds
> ety wlg,a T 5]) a8
B X 2it 8(2—a)p’ S
>0

_ e [T w(lmats]) ds
3(2_01)13

In consequence,

/°° w” ([a,a + s)) ds - pr'([a,a—i-t])

s(2—a)p’ s = t(2—a)p’

Now, using Lemma 3.3 in [1] with ¢(s) = w? ([a,a + s]) y r = (2 — a)p/,
there exist C' and € such that

p(0t) < CO" (1),
for every t > 0 and 6 > 1. That is,
w” ([a, a4 0t]) < COC~P =<y ([a,a + 1)),

for every t > 0 and § > 1, This completes the proof of (a) = (b).
(b) = (a) : Let I =[a,a+ t]. If (b) holds, we have that

/ 1/]?’ k+1 / 1/29,
[e%) p 0 a+2 t p
/ L) - rdy =1 / L) - rdy
att (y —a)Z=ow atory (Y —a)@—op

k=0
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[e¢) 1/p'
< (Z e w” ([a+t, a+t+2k+1t])>

k:0

IN

o0 2k+1 (2—a)p’—e¢ N /v
C Z Foyeay v (attat2)

k=0

1 a2t N A N
(o) e
Using the hypothesis w € RH~ (p') we obtain that (4.2) is bounded by
ok / y)dy g2t Cw

which shows that w € H™ («, p).

IN

The proof of (b) = (c) is very simple and we shall omit it.
(¢) = (b) : Taking # = 1 in (c) we have that w € RH~(p'). Using (c) and
Holder’s inequality,

(wp/([a— t,a—l—ﬁt]))l/p/ _ (wp/([a—t, al) + wp,([a,a—i—@t]))l/p/

ot ot ot

’ 1/1’, / 1/73/
. <wp ([ag; m])) + cgbHima—s <wp<[at— t,an) |

We can suppose that %—i— 1l—a-— 1% > 0, then taking into account that 6 > 1

/ 1/p' / 1/p'
(wp([a—t,a—t+9t])> < <wp([a—t,a+9t])>
ot - ot

1 € p/ t l/p/
< cpiti-ad (w (ja — ,a])> |

t

From these inequalities with @ = b + ¢ we obtain that
w” ([b,b+ 0t]) < COZP' =< P ([b, b+ 1]),
which completes the proof. O

Remark 4.3. It is easy to see that if w? belongs to A7 then, w € H™ (o, p).
On the other hand, applying Lemma 4.2 (b) = (a), it follows that if w(x) =
|x|7 with 0 < v < 1/p —a+ 1, then w belongs to H (a, p), but w does not
belong to Ay . For 0 < a < l/p, as an immediate consequence of Lemma 4.2

(¢) = (a) it follows that if w?”" belongs to A, then, w belongs to H™ (a, p).
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The next two lemmas show that if w belongs to H™ (a,p),1 < p < o0,
then there exists 7 > 0 such that w belongs to H™ (a, q) for every q : p—n <
g<p-+mn.

Lemma 4.4. Let 1 < p < oo and w € H™ (o, p). Then, there exists oy €
(0,1) such that w € H™ (a, (p'd)") for any § : §p < 6 < 1.

Proof. It is a simple variant of Lemma 3.13 in [1]. O

Lemma 4.5. Let 1 < p < 0o and w € H™ («,p). Then, there exists 19 > 1
such that w € H™ (a, (p'7)") for any 1 < 7 < 19.

Proof. Since w € RH™(p') applying Theorem 5.3 in [9], there exists
7o > 1 such that for every 7 : 1 < 7 < 7y there exists a constant C' such that

(4.3)
c €L b 1 b o
1 ’ T 1 s\ P
DT < < D
() el [ w)<e ([ =)

for every a < b < ¢ with ¢ —b = 2(b—a). Let I = [a, b]. Using (4.3) we have
that,

(4.4)

w(y)P'”

o wy)Pr /
—dy = —dy
/b (y — a)ow' kzzo 2k |1 <y—az2t+1 )1 (Y — a) BT

1 / /
B Z (2RI C=P'T Jor 1<y—a<artii] W)y dy

1 1 T
p
= 02(2/@;];)@%);}%_1( w(y) dy)

k
>0 2k|1] 2k—1|[|<y—a<2k|I|

Taking into account that 7 > 1, (4.4) is bounded by

k 1 w(y)” '
CZZ 7] ( —a)p,dy

k>0 25|11 Jyr-1)11<y—aorr (y — @)~

s w(y)” '
<l (/1 <y—a (y —a)@—a) dy>
T 3Y—a

Keeping in mind that w € H™ (a, p) we have,

% (y)P'T 17 (w(a,a+[11/2]) 0 1 /prat o
———dy < C|I|"'7 I|—/rre
|, e =ci N

/

w(l) 1 nr
— C 1 )
1| |I| @'Y —atl
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which implies that w € H™ (o, (p'7)’). O
Lemma 4.6. Let 1 < p; < p2 < oo. Suppose that w € H™ (o, p;) fori=1,2.
Then w € H™ (a,p) for every p:p; < p < pa.

Proof. This is an one-sided version of Lemma 3.15 in [1]. O

Lemma 4.7. Let 1 < p < oo and w € RH(p'). There exists a constant
C such that for every f € L, and every bounded interval I = [a,b], if we
denote I~ = [a — U a| then,

w()
Jr@las < ¢ i

Proof. Since w € RH™ (p') by Theorema 5.3 in [9], there exists s > p/
such that w € RH ™~ (s), that is, there exists a constant C' such that for every

bounded interval I,
1 / /s w(I)
— w(m)sdx> <C ———=.
<II | Jr 1]

From this fact, the proof follows as in Lemma 4.1 of [1]. O

Lemma 4.8. Let1 < p < oo andw € H™ (o, p). Then there ezists a constant
C such that for every f € L%, and every bounded interval I = [a, b,

/b°° M}éd(y < CLI) [flpw-

|I‘2+%—a
Proof. Taking into account Lemma 4.4 and Lemma 4.5, the proof of this

lemma is similar to one in Lemma 4.4 of [1]. O

Lemma 4.9. Let a > 0 and d > 0 such that 0 < a4+ 6 < 1. Let w € D™
For a < b, we denote ¢ = “TH’ and I = [c,b]. Then, for every f € Ly(9),
there exists a constant C such that,

(i)
£(y) - f1 * ()
| < Clflens [ s

/ 7y f1|d3/< C”f”c () / (y_uzl()%)_a_(gdy-

Proof. The proof of (i) and (ii) are similar, then we only prove part (i).
For every j > 0, let I; = [a + 27|I|,a + 2771|I|]. We observe that Iy =
[a+|I|,a+2|I|] =[c,b] = 1. Since f € L,(5) we have that,

0 29t ]|
(4.5) /b 1f(y) — fil fI’ dy = Z/ 1fly) = fil fI’ dy

(y—a)2= at2i)r] (Y — (y—a)2=

(i)

J=1
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1 a+271 1|
(Qjm)g_a/ |f(y) — fioldy

+21|1|

M

Jj=1

1 a+2911 1| A J
@i / ) = frldy+ 21D ) fr, - f1k1|]
1 “ k=1

+27|1|

IN
3

J

> 1| ‘ i
> s | Wl @IV 3G 1) = b
Using that f € £,(d) and w € D~ we obtain the estimate,

1 _ _
\F@) = froldy < C|lfll e syw(T—1)(2¥H1])° 7!
1] Jr,_,

Then applying Fubini’s Theorem, (4.5) is bounded by
oo 1 J

Cllfll 2w Z @ Z w(Iy) (2 1))°
=1

k=0

(o]
1
= Clfllzue Zw L) (2¥(11)°" IZW
k=0

o a+2F+1 1]

1
= Clfllc,e __/ w(y)dy
”%@WWaéﬁm”
* w(y)
< C|f| Lw(é)/ Wdy,
as we wanted to prove. O

5. PROOF OF THE THEOREMS 2.3 AND 2.4

Proof of the Theorem 2.3. N N
(i) = (i1) : Let w € H (a,p) and g € IR. Given f € L%, let I (f)
define as in (2.2). Choose a bounded interval I = [a,a + h]. We consider
Iy = [a+2h,x0] if a+2h < zg and Iy = 0 if 29 < a+ 2h, and we also define
I = [zg,a + 2h] if xg < a+ 2h and I; = () in the other case. We set
_ fy) Fll=xny) 1= Xwomo+) (y)}
o= e [ [ g o

0

We shall show that a; is a finite constant.
Suppose that o < a4+ 2h. Let n be a positive integer such that a +2"h >
7o+ 1 and |a — x| < 2" 'h. Then,

at2mh 00 I = Xoat20)(¥) 1= Xwo,w0+1] (y)]
ar = + ; _ , p
! </a70 /a+2"h> [ (y — a)l—a (y — xo)l—a f(y)dy
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=J1 + Jo.

For each y > a 4+ 2"h, by Mean Value Theorem, there exists 6 : 0 < 6§ < 1
such that,

1 1 |zo — a |20 — al
(y—a)l=  (y—mxo)~@ ly —0a— (1 —=0)zo|>~® = " |y —al?~®
Then, applying Lemma 4.8, we have that
o0 2"h,
Bl <Cleo—da [ D4 < opy - ogl@at 2y o
atanh |y — al (2nh)?t 5@

On the other hand, since f € Z{Z and using Lemma 4.7, we get

a+2"h a+2"h
| < / /()] dy+/+ FOL g,

N von  (y—a)t@ ot1  (y—mo)t=e

a+2"h a+2"h
< 1 / F)ldy + / )]y < oc.

(2h>1_a +2h zo+1

The case xg > a + 2h can be proved in a similar way.
Now, let

(5.1)

B a+2h f(y) 00 1 B 1
A = | (y—x)lady+L+2h[(y—x>la TEP ) R

= Al(.%') + AQ(J?)

It follows that,

(5.2) I3 (f)(x) = A(z) + ar.
We shall show that,

/I IE(/)(@) — arldz < CYIEYPuw(I7) [l

We observe that taking into account (5.2) and (5.1) it is sufficient to prove
that

/I A (@)]de < O 2w (I flp:

for j = 1,2. Applying Mean Value Theorem, Lemma 4.8 and Lemma 4.1
part (iii) for every x € I = [a,a + h] we have that,

& 1 1
O I == e e = L
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= W)l w([a, a + 2h])
Ch ——=—d Ch——————"flpw
< / —dy < P [f]

IN
Q

Therefore,

/l As(@)ldz < CIIPPYPw(I7) [flpan.

With respect to Aj(x), changing the order of integration and applying

Lemma 4.7,
a+h a+h pra+2h \f(y)\
A dr < ———dyd
L l<w>‘w—/a A TR

a+2h a+2h
</ ) / gy <cne / F(y)ldy

< ChYPw([a - h,a))[flpuws

which completes the proof of (i) = (ii).
The implication (i7) = (iii) is obvious.

(791) = (i) Let @ € IR and h > 0. We consider f > 0 such that sop(f) C
[a 4+ 4h,0). For each x € [a,a + h] we have that,

115 (f)(2) = LY (F)la+2n,a+30]]

a+3h 1 1
— dydt.
a+2h /a+4h [ —t)lme (y— z)la}

Applying Mean Value Theorem, for each y > a + 4h we obtain,

1 1 |z — t| h
- >C >C :
=)' y-—=)>" (y—a? " (y—a)P*

In consequence,

IE() (@) = L (Diasonaran] = Ch /

a+4h (y -

o f(y)

dy.
a)2—a Y

Then, if f € L%, using (iii) we have that,

o0 a+3h
Ch? /a+4h (y;f(j))z_ady < 2/a I3 (f)(x) — I:{(f)[a’wgh”dx

< C(3h)%w(]a — 3h,a)) U <£(Z))>p dy] "
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Now, taking into account that = a — 1/p it follows that,

5.3 hl/p—a+1 /OO f(y) d
(53) atan (Y —a+3h)> Y
_ S p 1/p
< oulle=shat i) [ [ (JOY )"
h a+4h w(y)
For each m > 2 we put,
w(y)?
fm(y) = (v) 5o X[at+4ah,a+2mh) (Y) X {o<w<m} (Y)-
(y —a—+3h)r-1

It is easy to check that f,, € L%,. Using (5.3) with f,,, and taking the limit,
we obtain that

/ 1/p
o o w(y)? w(la — 3h,a + 4h
Ry ( / K () (M)p/dy> < ovll )
a+

y—a+ 3h) - h ’
which shows that w € H™ (o, p). O

Remark 5.1. By Theorem 2.1, if 0 < 8 < 1, we can substitute in Theo-
rem 2.3, Lo,(B) for L,(3). That is not possible for —1 < 3 < 0. In fact, if
w and f are defined as in Remark 3.2 part (ii), then

M6_‘“” x>0

a® ’

Iy (@) =

|| e o —u, a—1
o a® a\x|e u du

Therefore, the same arguments used in Remark 3.2 imply that I} (f) ¢ Lu(5).

x < 0.

Proof of Theorem 2.4.
(i) = (i1) Let R > 0. For any a € IR, applying Fubini’s Theorem and
taking into account that w is a locally integrable function, we have that

a+1 x+R
/ / %dyd:ﬁ < o0.
a T (y - 1‘) o

In consequence, for almost every x and every R > 0
z+R
T (y - $) o
Let ¢ satisfying (5.4). We consider

(5.5) [}/(f)(w):/w I:X[J:o,oo)(y) Xz,00) (¥)

y— o[~y —af =0

f(y)dy.

—0o0

We shall show that if f € £,,(0) then E(f), defined as in (5.5), is finite for
every x satisfying (5.4). Fix z satisfying (5.4). Suppose that xo < x and let
Re@:xy <z <xz9+ R/4. We consider the interval I = [xo + R/2, 0 +
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is

R]. Taking into account that the function g(y) = Ei%;‘l’i(,y: — T;[i;‘f}(,yi

integrable and f y)dy = 0 we can write,

Eumw::/m[””@@)—”““”}mw—ﬁwy

ly —xoltm |y — a7

= Li(x)+ Ix(x),

L(z) = /;MR and  D(z) = /:O

0 o+R

where,

We shall prove
(5.6)

— zo+5R/4 w(y) z+5R/4 w(y)

It )| <C / ———d +/ ——dy| .
15 (1) (a) Hﬂkﬁm[m et [
We observe that,

To+R ro+R
AR OIS [P TR Y

Let J =[x + R/2,z + R|. Applying Lemma 4.9 part (ii) we have that

| f(y) = fil
5.7 Ii(z §/ =2 dy
(5.7 n) < [
z+R
+/ ‘f() 1fi|+’fl_fJ’/ e
«  |y—=| 96!
zo+R/2 w(y) z+R/2 w(y)
<C / ——dy+C ——d
[ £1l 2.0 (0) s T 1 £1l 2., (0) ) T
RCM
+—1fr = fJl-
o
Since g < © < 9 + R/4 and f € L£,,(0) we have,
z0+5/4R w(y)
RU =P <C v [ Dy
[f1 = f1l < Cllfllzwo . —ag) @

Then, by (5.7)

xo+5R/4 w(y) x+5R/4 w(y)
L) <C Wy [
1) Hf!cwm)[jCO Gt [

— -TO)

Now, let us estimate I5. Applying Mean Value Theorem,

muns/+R ! L rw) - frldy

ly—moll=e |y —afl-@
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[e.9]

|f(y) — f[x0+R/2,xo+R}|
zo+R (y - 1"0)2704

Using Lemma 4.9 part (i) and taking into account that w € H™ («a,00) we
get,

< Culzo — | dy.

> w(y)
L(z)] < CaR|flz, / ———5——dy
[12()] £l 2. (0) S

w([zo, xo + R/2])
RQfa

< CoR| fllzwo)

I0+R/2

< CaHfHEw(O)/ wly)

0 (y - xo)l—a
Then, if zg < z < 29+ R/4 or in the case z9 — R/4 < x < xp, we have that

(5.6) holds. Since IR = Ureg=o[ro — R/4, 0+ R/4], it follows that I (f)(z)
is finite for almost every .

Let us show that I (f) € Ly (). For almost every z1 < x9, if we define
R = 4|x; — x|, we have that 21 < z9 < z; + R/4 and using (5.6) we get

() (21) = T2 (F) (2)
/oo| Xz1,00) (y) Xz2,00) (y)

IN

) (y —ag)te

|f(Y) = flor+r/2.20+R] DY

IN

x1+5|x1—rg| w(y x2+5\w1—m2| w(y
WNM@U‘ Wiy [ )

- (y —xp)te ) (y — wp)te

Taking into account that w € D™ and using Proposition 3.3 it follows that

I3 (f) € Lu(a).
(74) = (i) This implication is similar to (¢i¢) = (¢) in Theorem 2.3. O

Corollary 5.2. Let a,8 € IR such that 0 < a + 8§ < 1. The following
statements are equivalent.

(a) w € H(9,00) and the operator I, can be extended to a linear bounded
operator I} : L,(8) — Ly(a+6).

(b) we H (a+ §,00).

Proof. The proof is a simple variant of Corollary 2.12 in [1]. O
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