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Abstract. In this paper we introduce the one-sided weighted spaces
L−w(β), −1 < β < 1. The purpose of this definition is to obtain an
extension of the Weyl fractional integral operator I+

α from Lp
w into a

suitable weighted space.
Under certain condition on the weight w, we have that L−w(0) coin-

cides with the dual of the Hardy space H1
−(w). We prove for 0 < β < 1,

that L−w(β) consists of all functions satisfying a weighted Lipschitz con-
dition. In order to give another characterization of L−w(β), 0 ≤ β < 1,
we also prove a one-sided version of John-Nirenberg Inequality.

Finally, we obtain necessary and sufficient conditions on the weight
w for the boundedness of I+

α from Lp
w into L−w(β),−1 < β < 1, and its

extension to a bounded operator from L−w(0) into L−w(α).
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1. Notations, definitions and prerequisites

Let E ⊂ IR be a Lebesgue measurable set. We shall denote its Lebesgue
measure by |E| and the characteristic function of E by χE .

As usual, a weight w is a measurable, non-negative and locally integrable
function defined on IR.

Let w be a weight. Given a Lebesgue measurable set E ⊂ IR, its w-
measure will be denote by w(E) =

∫
E w(t)dt.

Let 1 < p < ∞. The weight w belongs to the class A−
p if there exists a

constant C such that

sup
h>0

[
1
hp

∫ a+h

a
w(x)dx

(∫ a

a−h
w(x)−

1
p−1 dx

)p−1
]
≤ C,
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2 WEYL FRACTIONAL INTEGRAL

for all real number a. In a similar way, w belongs to A+
p if

sup
h>0

[
1
hp

∫ a

a−h
w(x)dx

(∫ a+h

a
w(x)−

1
p−1 dx

)p−1
]
≤ C,

for all real number a. The class A−
1 is defined by the condition

sup
h>0

[
1
h

∫ a+h

a
w(x)dx

]
≤ Cw(a),

for almost every real number a. The weight w belongs to A+
1 if

sup
h>0

[
1
h

∫ a

a−h
w(x)dx

]
≤ Cw(a),

for almost every a. These classes A−
p and A+

p were introduced by E. Sawyer
in [12]. We recall three basic results on these weights.

(i) For 1 < p < ∞, a weight w belongs to A−
p if and only if w1−p′ belongs

to A+
p′ , where 1

p + 1
p′ = 1.

(ii) If 1 ≤ p < q < ∞, then A−
p ⊂ A−

q .

(iii) If 1 < p < ∞ and w belongs to A−
p , then w belongs to A−

p−ε for some
ε > 0.

The proof of parts (i) and (ii) are very simple and (iii) can be found in
Proposition 3 in [3].

In the sequel, for each bounded interval I = [a, b] we shall denote I− =
[a− |I|, a] and I+ = [b, b + |I|].

Let 1 ≤ q < ∞. A weight w satisfies the condition RH−(q) if there exists
a constant C such that for every bounded interval I,[

1
|I|

∫
I
w(x)qdx

]1/q

≤ C
1
|I|

∫
I−

w(x)dx.

We shall say that a weight w belongs to D− if there exists a constant C
such that for every bounded interval I,

w(I ∪ I+) ≤ Cw(I).

It is well known that if w ∈ A−
p , 1 ≤ p < ∞, then w ∈ D−.

Let w be a weight, 1 ≤ p < ∞ and f a measurable function. We shall say
that f belongs to Lp

w if

‖f‖p
p,w =

∫ ∞

−∞

[
|f(x)|
w(x)

]p

dx

is finite. The function f belongs to L̃p
w if

[f ]pp,w = sup
t>0

tp
∣∣∣∣{x ∈ IR :

|f(x)|
w(x)

> t

}∣∣∣∣
is finite.
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Let 0 < α < 1. Given f a measurable function on IR, its Weyl fractional
integral is defined by

I+
α f(x) =

∫ ∞

x

f(y)
(y − x)1−α

dy,

whenever this integral is finite.
In the sequel, the letter C will denote a positive finite constant not nec-

essarily the same at each occurrence. If 1 ≤ p ≤ ∞ then p′ will be its
conjugate exponent, that is, 1/p + 1/p′ = 1.

Let w be a weight and −1 < β < 1.

Definition 1.1. We say that a locally integrable function f defined on IR
belongs to Lw(β), if there exists a constant C such that

1
w(I)|I|β

∫
I
|f(y)− fI |dy ≤ C,

for every bounded interval I, where fI = 1
|I|
∫
I f. The least constant C will

be denoted ‖f‖Lw(β).

The spaces Lw(β) were introduced by E. Harboure, O. Salinas and B. Vi-
viani in [1]. They are a weighted version of the spaces Lλ,p, for p = 1,
defined by J. Peetre in [8]. If w belongs to A−

q , 1 ≤ q < 2, then Lw(0) is the
dual space of the one-sided weighted Hardy space H1

−(w), see [10] and [11].

Definition 1.2. We say that a locally integrable function f defined on IR
belongs to L−w(β), if there exists a constant C such that

1
w(I−)|I|β

∫
I
|f(y)− fI |dy ≤ C,

for every bounded interval I. The least constant C satisfying this inequality
will be denoted ‖f‖L−w(β).

In the following definition, we consider a one-sided version of the classes
H(α, p) defined in [1].

Definition 1.3. Let 0 < α < 1 and 1 < p ≤ ∞. We say that a weight w
belongs to H−(α, p) if there exists a constant C such that for every bounded
interval I = [a, b], the inequality

|I|
1
p
−α+1

[∫ ∞

b

w(y)p′

(y − a)(2−α)p′
dy

]1/p′

≤ C
w(I)
|I|

,

holds.
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2. Statement of the main results

Lemma 4.1 part (iii) shows that if w belongs to H−(α, p), 1 < p ≤ ∞, then
w belongs to D− and therefore Lw(β) ⊆ L−w(β) for every β : −1 < β < 1.
The next theorem states that w belonging to D− is a sufficient condition for
the equality of these spaces, whenever 0 ≤ β < 1.

Theorem 2.1. Let 0 ≤ β < 1 and let w belong to D−. Then, the spaces
Lw(β) and L−w(β) are equal, and their norms are equivalent.

The next theorem gives us a characterization of the spaces Lw(β), 0 ≤
β < 1, whenever w belongs to A−

p . In the case β = 0, we shall prove this
result using Proposition 3.6, which states a one-sided weighted version of
John-Nirenberg Inequality.

Theorem 2.2. Let 0 ≤ β < 1 and 1 ≤ p < ∞. Let w be a weight such that
w belongs to A−

p . Then, f ∈ Lw(β) if and only if there exists a constant C
such that ∫

I−
|f(x)− fI+ |qw(x)1−qdx ≤ Cw(I−)|I|βq,(2.1)

for all bounded interval I and every q : 1 ≤ q ≤ p′, q < ∞.

The following two theorems state a sufficient and necessary condition on
the weight w to obtain extensions of I+

α defined on certain spaces.

Theorem 2.3. Let 0 < α < 1, 1 < p < ∞ and β = α − 1/p. The following
statements are equivalent.

(i) The weight w belongs to H−(α, p).
(ii) The operator I+

α can be extended to a linear bounded operator Ĩ+
α from

L̃p
w into L−w(β) by means of

Ĩ+
α (f)(x)(2.2)

= −
∫ x

x0

f(y)dy

|y − x|1−α
+
∫ ∞

x0

[
1

|y − x|1−α
−

1− χ[x0,x0+1](y)
(y − x0)1−α

]
f(y)dy,

for an appropriate choice of x0 ∈ IR.

(iii) The operator I+
α can be extended to a linear bounded operator Ĩ+

α

from Lp
w into L−w(β), where Ĩ+

α is defined as in (2.2).

Theorem 2.4. Let w a weight and 0 < α < 1. The following statements
are equivalent.

(i) w ∈ H−(α,∞).
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(ii) The operator I+
α can be extended to a linear bounded operator

Ĩ+
α : Lw(0) −→ Lw(α) by means of

Ĩ+
α (f)(x) =

∫ ∞

−∞

[
χ[x0,∞)(y)
|y − x0|1−α

−
χ[x,∞)(y)
|y − x|1−α

]
f(y)dy,

for an appropriate choice of x0 ∈ IR.

Remark 2.5. Let 1 < p < 1
α and β = α− 1/p < 0.

(i) It is easy to see that if w belongs to RH−( 1
1+β ), then L

−1/β
w ⊆ L−w(β).

(ii) By Lemma 4.4 in [9], if wp′ belongs to A−
−βp′+1 then w satisfies the

condition RH−(p′), and taking into account that 1
1+β < p′, it follows that w

belongs to RH−( 1
1+β ).

(iii) Theorem 6 in [4] states the fact that wp′ belongs to A−
−βp′+1 is a

necessary and sufficient condition for the boundedness of I+
α from Lp

w into
L
−1/β
w ⊆ L−w(β).
(iv) If wp′ belongs to A−

−βp′+1, since wp′ ∈ A−
p′+1, we have that w belongs

to H−(α, p). However, there exist weights w belonging to H−(α, p) such that
wp′ does not belong to A−

p′+1, for example, w(x) = |x|γ for −β ≤ γ < 1− β,

see Remark 4.3.
In consequence, if −1 < β < 0 and wp′ belongs to A−

−βp′+1, the extension
of I+

α in Theorem 2.3 can be obtained from Theorem 6 in [4]. But, (iv) shows
that Theorem 2.3 can be applied to a larger class of weights.

Remark 2.6. Let w be a weight. We shall say that a locally integrable
function f defined on IR, belongs to MW−(w) if there exists a constant C
such that

1
|I|

1
ess infI−w

∫
I
|f(y)− fI |dy ≤ C,

for every bounded interval I.
(i) By Definition 1.2, it follows that MW−(w) ⊆ L−w(0). Moreover, if

w belongs to A−
1 then Lw(0) ⊆ MW−(w), and as a consequence of Theo-

rem 2.1, L−w(0) = MW−(w).
(ii) Following the same lines of Theorem 7 in [7], it can be seen that, in

the case α = 1/p, the weight wp′ belongs to A−
1 if and only if the operator

I+
α is bounded from Lp

w into MW−(w). Also see [2].
(iii) If wp′ belongs to A−

1 then, by Remark 4.3, w belongs to H−(α, p).
In consequence, the fact that wp′ belongs to A−

1 implies the boundedness
of I+

α from Lp
w into MW−(w), is contained in Theorem 2.3.

3. The spaces Lw(β) and L−w(β)

The next lemma will be used in the proof of Theorem 2.1.
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Lemma 3.1. Let −1 < β < 1, f a locally integrable function defined on IR,
and w ∈ D−. The following statements are equivalent.

(i) f ∈ L−w(β).
(ii) There exists a constant C such that for every a ∈ IR and h > 0,

1
w([a− h/2, a])hβ

∫ a+h

a
|f(y)− f[a+h/2,a+h]|dy ≤ C.

(iii) There exists a constant C such that for every a ∈ IR and h > 0,

1
w([a− h/2, a])hβ

∫ a+h

a
|f(y)− f[a+h,a+3h]|dy ≤ C.

The constants C in (ii) and (iii) are equivalent to ‖f‖L−w(β).

Proof.
(i) ⇒ (ii). Using (i) and taking into account that w ∈ D−, we have∫ a+h/2

a
|f(y)− f[a+h/2,a+h]|dy

≤
∫ a+h/2

a
|f(y)− f[a+h/4,a+h/2]|dy + 2

∫ a+h

a+h/4
|f(y)− f[a+h/2,a+h]|dy

≤ 3
∫ a+h/2

a
|f(y)− f[a,a+h/2]|dy + 5

∫ a+h

a+h/4
|f(y)− f[a+h/4,a+h]|dy

≤ C‖f‖L−w(β)w([a− h/2, a])hβ + C‖f‖L−w(β)w([a− h/2, a + h/4])hβ

≤ C‖f‖L−w(β)w([a− h/2, a])hβ.

From these inequalities and using (i) again, we have the estimate∫ a+h

a
|f(y)− f[a+h/2,a+h]|dy

=
∫ a+h/2

a
|f(y)− f[a+h/2,a+h]|dy +

∫ a+h

a+h/2
|f(y)− f[a+h/2,a+h]|dy

≤ C‖f‖L−w(β)w([a− h/2, a])hβ + C‖f‖L−w(β)w([a, a + h/2])hβ

≤ C‖f‖L−w(β)w([a− h/2, a])hβ ,

which shows that (ii) holds. In a similar way it can be proved that (ii) ⇒
(iii) and (iii) ⇒ (i). 2

As we have already mencioned if w belongs to D− then, for every −1 <
β < 1 we have the inclusion Lw(β) ⊆ L−w(β). In order to prove Theorem 2.1,
it will be sufficient to show that L−w(β) ⊆ Lw(β).
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Proof of Theorem 2.1. We suppose that f ∈ L−w(β). Let a ∈ IR and
h > 0. For each j ≥ 0 we define aj = a + h/2j . Then,

∫ a+h/2

a
|f(y)− f[a+h/2,a+h]|dy =

∞∑
j=1

∫ aj

aj+1

|f(y)− f[a+h/2,a+h]|dy

(3.1)

≤
∞∑

j=1

∫ aj

aj+1

|f(y)− f[aj ,aj−1]|dy +
∞∑

j=2

h

2j+1
|f[aj ,aj−1] − f[a1,a0]|

= I + II.

Taking into account that for each j ≥ 2,

|f[aj ,aj−1] − f[a1,a0]| ≤
2j

h

∫ aj−1

aj

|f − f[a+h/2,a+h]|

it follows that,

II ≤
∞∑

j=2

1
2

∫ aj−1

aj

|f − f[a+h/2,a+h]| =
1
2

∫ a+h/2

a
|f(y)− f[a+h/2,a+h]|dy.

Then, by (3.1) ∫ a+h/2

a
|f(y)− f[a+h/2,a+h]|dy ≤ 2I.(3.2)

Now, using part (iii) of Lemma 3.1 and keeping in mind that β ≥ 0 we have
that,

I ≤ C
∞∑

j=1

(
h

2j

)β

w([aj+2, aj+1]) ≤ Chβw([a, a + h/4]).(3.3)

From (3.2) and (3.3), and taking into account that f ∈ L−w(β), we get∫ a+h

a
|f(y)− f[a+h/2,a+h]|dy

=
∫ a+h/2

a
|f(y)− f[a+h/2,a+h]|dy +

∫ a+h

a+h/2
|f(y)− f[a+h/2,a+h]|dy

≤ Chβw([a, a + h/4]) + Chβw([a, a + h/2])

≤ Chβw([a, a + h]).

Therefore,∫ a+h

a
|f(y)− f[a,a+h]|dy ≤ 3

∫ a+h

a
|f(y)− f[a+h/2,a+h]|dy ≤ Chβw([a, a + h]),

which shows that f ∈ Lw(β). 2
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Remark 3.2. Let −1 < β < 0 and w(t) = e−t. The weight w belongs to A−
1

however, we only have the strict inclusion Lw(β) ⊂ L−w(β). For example,
given a > 1 we consider the function

f(t) =
{

e−at , t ≥ 0
1 , t < 0.

We observe, using Remark 2.5 part (i), that f ∈ L−w(β). On the other hand,

1
hβw([0, h])

∫ h

0
|f − f[h,2h]| =

1
hβ(1− e−h)

[
1− e−ah

a
− e−ah

a
(1− e−ah)

]

=
(1− e−ah)2

hβ(1− e−h)a
,

which tends to infinite whenever h tends to infinite. This implies that
f /∈ Lw(β).

The next proposition will be used in the proof of Theorem 2.2.

Proposition 3.3. Let 0 < β < 1 and let w belong to D−. Then, f ∈ Lw(β)
if and only if, there exists a constant C such that

|f(x)− f(y)| ≤ C

[∫ x+
|y−x|

2

x

w(z)
(z − x)1−β

dz +
∫ y+

|y−x|
2

y

w(z)
(z − y)1−β

dz

]
,

(3.4)

for almost every real numbers x and y.

Proof. We suppose that f ∈ Lw(β). We shall show that for every h > 0
and almost every x,

|f(x)− f[x+h/2,x+h]| ≤ C

∫ x+h/2

x

w(z)
(z − x)1−β

dz.(3.5)

For each i ≥ 0 let xi = x + h/2i. If x is a Lebesgue point of f we have that,

|f(x)− f[x+h/2,x+h]|(3.6)

≤ |f(x)− f[xi+1,xi]|+ |f[xi+1,xi] − f[x1,x0]|

≤ |f(x)− f[xi+1,xi]|+
i∑

j=1

|f[xj+1,xj ] − f[xj ,xj−1]|

≤
∞∑

j=1

|f[xj+1,xj ] − f[xj ,xj−1]|.

For each j ≥ 1, since f ∈ Lw(β) we obtain

|f[xj+1,xj ] − f[xj ,xj−1]| ≤ C
1

(xj+1 − xj−1)1−β
w([xj+1, xj−1]).
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From this inequality, (3.6) and taking into account that w ∈ D− we get,

|f(x)− f[x+h/2,x+h]| ≤ C
∞∑

j=1

∫ xj−1

xj+1

w(z)
(z − x)1−β

dz

= C

∫ x+h

x

w(z)
(z − x)1−β

dz ≤ C

∫ x+h/2

x

w(z)
(z − x)1−β

dz,

which shows that (3.5) holds. Let x < y two Lebesgue points of f. By (3.5)
we have that,

|f(x)− f(y)| ≤ |f(x)− f[x+y
2

,y]|+ |f(y)− f[y+ y−x
2

,y+(y−x)]|
(3.7)

+|f[x+y
2

,y] − f[y+ y−x
2

,y+(y−x)]|

≤ C

[∫ x+
|y−x|

2

x

w(z)
(z − x)1−β

dz +
∫ y+

|y−x|
2

y

w(z)
(z − y)1−β

dz

]

+|f[x+y
2

,y] − f[y+ y−x
2

,y+(y−x)]|.

From the hypotheses f ∈ Lw(β) and w ∈ D−, it follows that the third term
on the right hand is bounded by

C

y − x

∫ y+(y−x)

x+ y−x
2

|f(t)− f[x+ y−x
2

,y+(y−x)]|dt

≤ C

(y − x)1−β
w([x, y +

y − x

2
]) ≤ C

∫ (x+y)/2

x

w(z)
(z − x)1−β

dz.

Therefore, by (3.7) we have that (3.4) holds.
Conversely, given a real number a and h > 0, by (3.4)∫ a+h

a
|f(x)− f[a,a+h]|dx(3.8)

≤ C

[∫ a+h

a

∫ x+
|y−x|

2

x

w(z)
(z − x)1−β

dzdx +
∫ a+h

a

∫ y+
|y−x|

2

y

w(z)
(z − y)1−β

dzdy

]
.

Changing the order of integration and taking into account that w ∈ D−, it
follows that (3.8) is bounded by Chβw([a, a + h]). This completes the proof
of the proposition. 2

The next two lemmas will be needed in the proof of Propotition 3.6.
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Lemma 3.4. Let w ∈ D− and f ∈ Lw(0). Given two intervals I ⊆ J the
inequality

1
w(J)

∫
J
|f − fI+ |χI−∪I ≤ C‖f‖Lw(0),

holds with a constant C only depending on w.

Proof. Let I = (a, b) and J = (c, d). We consider α = max{a − |I|, c}
and β = b + |I|. Since J ∩ (I− ∪ I) ⊆ (α, β) we have that,

1
w(J)

∫
J
|f − fI+ |χI−∪I ≤

1
w(J)

∫ β

α
|f − fI+ |(3.9)

≤ 1
w(J)

[∫ β

α
|f − f(α,β)|+

(β − α)
|I+|

∫
I+

|f − f(α,β)|
]

We observe that (β − α) ≤ 3|I|, which implies

(3.9) ≤ 4
w(J)

∫ β

α
|f − f(α,β)|.

From the hypotheses f ∈ Lw(0) and w ∈ D−, and taking into account that
(α, β) ⊆ J ∪ J+, (3.9) is bounded by

4
w(J)

‖f‖Lw(0)w((α, β)) ≤ C‖f‖Lw(0),

as we wanted to prove. 2

Lemma 3.5. Let 1 < p < ∞ and w ∈ A−
p . Then, there exists a constant C

such that for every β > 0 the inequality

w({x ∈ I− : w(x) < β}) ≤ C

[
β
|I+|

w(I+)

]p′

w(I+),(3.10)

holds.

Proof. This lemma is a simple variant of Lemma 3.1 in [6]. 2

The following proposition is a one-sided weighted version of John-Nirenberg
Inequality. For its proof we shall use the method employed in Theorem 3 in
[6] and the techniques of Lemma 1 in [5].

Proposition 3.6. Let f belong to Lw(0). Then,
(i) if w ∈ A−

1 there exist positive constants C1 y C2 such that for every
λ > 0,

w({x ∈ I− : |f(x)− fI+ |w(x)−1 > λ}) ≤ C1e
−C2λ/‖f‖Lw(0)w(I−)

holds for every bounded interval I.
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(ii) if w ∈ A−
p , 1 < p < ∞ there exists a positive constant C3 such that

for every λ > 0,

w({x ∈ I− : |f(x)− fI+ |w(x)−1 > λ}) ≤ C3

(
1 + λ/‖f‖Lw(0)

)−p′
w(I−)

holds for every bounded interval I.

Proof. Without loss of generality we can suppose that ‖f‖Lw(0) = 1. For
each λ > 0 and each bounded interval I, let

A(λ, I) = w({x ∈ I− : |f(x)− fI+ |w(x)−1 > λ}),

and

A(λ) = sup
A(λ, I)
w(I−)

,(3.11)

where the supremum is taken over all f : ‖f‖Lw(0) = 1, and all bounded
interval I. Thus, for every λ > 0, we have that A(λ) ≤ 1.

By Lemma 3.4 there exists a constant µ satisfying

1
w(J)

∫
J
|f − fI+ |χI−∪I ≤ µ,(3.12)

for every bounded intervals I ⊆ J and every f : ‖f‖Lw(0) = 1.
Fixed I = [a, b], let s > µ and

Ωs = {x : M−
w (|f − fI+ |χI−∪Iw

−1)(x) > s}.

Since Ωs is an open set, we can write Ωs = ∪i≥1Ji, where the J ′is are its
connected components.

We observe that if Ji ∩ I− 6= ∅ then Ji ∩ I+ = ∅. In fact, suppose that
Ji ∩ I− 6= ∅ and let Ji = (α, β). If β ≥ b a simple variant of Lemma 2.1 in
[12], shows that

µ < s ≤ 1
w((α, b))

∫ b

α
|f − fI+ |χI−∪I .

However, using (3.12) we have that

1
w((α, b))

∫ b

α
|f − fI+ |χI−∪I ≤ µ.

In consequence, β < b and Ji ∩ I+ = ∅.
Let {Ji : Ji ∩ I− 6= ∅} = {Hi}i≥1. For each i,

Hi ⊆ I− ∪ I and
1

w(Hi)

∫
Hi

|f − fI+ | = s.(3.13)

By Lebesgue’s Differentiation Theorem with respect to w for almost every
x ∈ I− \ ∪i≥1Hi,

|f(x)− fI+ |w(x)−1 ≤ s.
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Using (3.13), (3.12) and keeping in mind that w ∈ D−, we have that∑
i≥1

w(Hi) =
1
s

∑
i≥1

∫
Hi

|f − fI+ | ≤ 1
s

∫
I−∪I

|f − fI+ |(3.14)

≤ 1
s
µw(I− ∪ I) ≤ 1

s
µCww(I−).

Fixed Hi = (ai, bi) we define the sequences (xk)k≥1 and (yk)k≥1 by bi −
xk = 2(bi − yk) = (2/3)k|Hi|, and the intervals Hi,k = (xk, yk). Therefore,

Hi =
⋃
k≥1

H−
i,k ,

1
w(H+

i,k)

∫
H+

i,k

|f − fI+ | ≤ s,(3.15)

and

|f(x)− fI+ |w(x)−1 ≤ λ a.e. x ∈ I− \
⋃
k,i

H−
i,k.

Then,

A(λ, I) ≤
∑
i,k

w({x ∈ H−
i,k : |f(x)− fI+ |w(x)−1 > λ}).

If µ < s ≤ λ and 0 < γ < λ, we have that

A(λ, I) ≤
∑
i,k

w({x ∈ H−
i,k : |f(x)− fH+

i,k
|w(x)−1 > λ− γ})

(3.16)

+
∑
i,k

w({x ∈ H−
i,k : |fH+

i,k
− fI+ |w(x)−1 > γ})

= I + II.

From (3.11), (3.15) and (3.14) we obtain the estimate

I ≤
∑
i,k

A(λ− γ)w(H−
i,k) = A(λ− γ)

∑
i

w(Hi)(3.17)

≤ Cwµ

s
A(λ− γ)w(I−).

On the other hand, (3.15) implies that

|fH+
i,k
− fI+ | ≤ 1

|H+
i,k|

∫
H+

i,k

|f − fI+ | ≤ s
w(H+

i,k)

|H+
i,k|

.(3.18)

If w ∈ A−
1 there exists ρ > 1 such that for every i, k and almost every

x ∈ H−
i,k,

w(H+
i,k)

|H+
i,k|

≤ ρw(x).
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Then, using (3.18) we have

|fH+
i,k
− fI+ | ≤ ρ s ess infx∈H−

i,k
w(x).

In consequence,

w({x ∈ H−
i,k : |fH+

i,k
− fI+ |w(x)−1 > γ})

≤ w({x ∈ H−
i,k : w(x) <

ρs

γ
ess infx∈H−

i,k
w(x)}).

Choosing s = 2µCw y γ = ρs, if λ > γ we have µ < s < λ and II = 0.
Then, from (3.16) and (3.17) we obtain that

A(λ, I) ≤ 1
2
A(λ− γ)w(I−),

that is, if λ > γ,

A(λ) ≤ 1
2
A(λ− γ).

Now, proceeding as in Theorem 3 of [6], it can be obtained part (i) of this
proposition.

In order to prove part (ii), we suppose that w ∈ A−
p , 1 < p < ∞. Using

(3.18), Lemma 3.5 and taking into account that w ∈ D−

w({x ∈ H−
i,k : |fH+

i,k
− fI+ |w(x)−1 > γ})

≤ w

({
x ∈ H−

i,k : w(x) <
s

γ

w(H+
i,k)

|H+
i,k|

})
≤ C

[
s

γ

w(H+
i,k)

|H+
i,k|

|Hi,k|
w(Hi,k)

]p′

w(Hi,k)

≤ C

(
s

γ

)p′

w(H−
i,k).

By (3.15) and (3.14), we have

II ≤ C

(
s

γ

)p′∑
i,k

w(H−
i,k) = C

(
s

γ

)p′∑
i

w(Hi) ≤ Cµ
sp′−1

γp′
w(I−).

Then, (3.16) and (3.17) imply that

A(λ, I) ≤ Cµ

[
A(λ− γ)

s
+

sp′−1

γp′

]
w(I−).

From this inequality, part (ii) follows as in Theorem 3 of [6]. 2

Proposition 3.7. Let 0 < β < 1 and 1 < p < ∞. Let w be a weight such
that w

1+ β
1−β

p belongs to A−
p . Then, f ∈ Lw(β) if and only if there exists

a constant C such that (2.1) holds for all bounded interval I and every
q : 1 ≤ q ≤ p′/(1− β).
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Proof. Suppose that (2.1) holds for every q : 1 ≤ q ≤ p′/(1− β). Taking
q = 1 it is easy to show that f ∈ Lw(β). Conversely, let f belong to Lw(β).
We observe that it will be sufficient to consider q = p′/(1 − β), because
from this case and applying Hölder’s inequality we obtain (2.1) for every
1 ≤ q < p′/(1 − β). Given a bounded interval I and using Proposition 3.3,
we have that

∫
I−
|f(x)− fI+ |qw(x)1−qdx ≤

∫
I−

[
1
|I+|

∫
I+

|f(x)− f(y)|dy

]q

w(x)1−qdx

(3.19)

≤ C

∫
I−
w(x)1−q

[
1
|I+|

∫
I+

(∫ x+
|y−x|

2

x

w(z)
(z − x)1−β

dz +
∫ y+

|y−x|
2

y

w(z)
(z − y)1−β

dz

)
dy

]q

dx

≤ C

∫
I−

w(x)1−q

(∫ x+
3|I|
2

x

w(z)
(z − x)1−β

dz

)q

dx

+
C

|I+|q

∫
I−

w(x)1−q

(∫
I+

∫ y+
3|I|
2

y

w(z)
(z − y)1−β

dzdy

)q

dx

= A + B.

If we denote J = I− ∪ I ∪ I+ then we have the estimate

A ≤ C

∫
I−

w(x)1−qI+
β (wχJ)(x)qdx.

Our hypothesis w
1+ β

1−β
p ∈ A−

p is equivalent to

w
1− p′

1−β ∈ A+
p′ ,(3.20)

where p′ = 1 + q
s′ and 1

s = 1
q + β. Then, by Theorem 6 in [4] it follows that

A ≤ C

(∫ ∞

−∞
w(x)−

s
q′ |wχJ(x)|sdx

)q/s

= C

(∫
J

w(x)s/qdx

)q/s

.

Since q/s = qβ+1 > 1, applying Hölder’s inequality and taking into account
that w ∈ D− we obtain

A ≤ C

∫
J

w(x)dx |J |
q
s
−1 ≤ Cw(I−)|I|βq.(3.21)

Let us estimate B. If we set J ′ = I+ ∪ I++ ∪ I+++, then

B ≤ C

|I+|q

∫
I−

w(x)1−q

(∫
I+

I+
β (wχJ ′)(y)dy

)q

dx

Applying Hölder’s inequality,

B ≤ C

|I+|q

(∫
I−

w(x)1−qdx

)(∫
I+

w(y)dy

)q/q′ ∫
I+

w(y)1−qI+
β (wχJ ′)(y)qdx.
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From (3.20), it follows that w1−q ∈ A+
q then, we have that

B ≤ C

∫
I+

w(y)1−qI+
β (wχJ ′)(y)qdx.

Proceeding as in the estimation of A and taking into account that w ∈ D−

we obtain

B ≤ Cw(I−)|I|βq.(3.22)

As consequence of (3.19), (3.21) and (3.22) we get (2.1) and the proof of
this proposition is complete. 2

Proof of Theorem 2.2. We shall prove that f belonging to Lw(β)
is a sufficient condition for (2.1) holds. The fact that (2.1) is a necessary
condition follows as in the previous proposition. For that, we shall consider
different cases.

First of all, we assume that β = 0 and f ∈ Lw(0). If w ∈ A−
1 we

have that (2.1) is an immediate consequence of Proposition 3.6 part (i). If
w ∈ A−

p , 1 < p < ∞, we have that w ∈ A−
p−ε for some ε > 0. Then, by

Proposition 3.6 part (ii), and proceeding as in Theorem 4 of [6], we obtain
that f satisfies (2.1).

Let 0 < β < 1 and 1 < p < ∞. Since the weight w belongs to A−
p there

exists 0 < α < β such that w1+ α
1−α

p belongs to A−
p . Proceeding as in (3.19),

we have that ∫
I−
|f(x)− fI+ |qw(x)1−qdx

≤ C

∫
I−
w(x)1−q

[
1
|I+|

∫
I+

(∫ x+
|y−x|

2

x

w(z)
(z − x)1−β

dz +
∫ y+

|y−x|
2

y

w(z)
(z − y)1−β

dz

)
dy

]q

dx

≤ C|I|(β−α)q

∫
I−

w(x)1−q

(∫ x+
3|I|
2

x

w(z)
(z − x)1−α

dz

)q

dx

+
C

|I|(β−α−1)q

∫
I−

w(x)1−q

(∫
I+

∫ y+
3|I|
2

y

w(z)
(z − y)1−α

dzdy

)q

dx

= |I|(β−α)q(A + B).

Substituting in the proof of the previous proposition α for β in the estimation
of A and B we obtain this case.

Finally, we suppose that 0 < β < 1 and p = 1. Since the weight w belongs
to A−

1 it follows that w belongs to A−
s for every 1 < s < ∞. Then, by the

previous case we obtain that (2.1) holds for every 1 ≤ q < ∞. 2
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4. The classes H−(α, p)

The next lemma states necessary conditions for that a weight w belongs
to H−(α, p).

Lemma 4.1. Let 1 < p ≤ ∞. If w ∈ H−(α, p) then,
(i) wp′ belongs to ∈ D−,
(ii) w belongs to ∈ RH−(p′),
(iii) w belongs to ∈ D−.

Proof. The proof of parts (i) and (ii) are similar to ones of Lemma 3.7
and Lemma 3.8, in [1], respectively. Applying Hölder’s inequality and (ii),
we obtain (iii). 2

Lemma 4.2. Let w be a weight. The following conditions are equivalent.
(a) w ∈ H−(α, p).
(b) w ∈ RH−(p′) and there exist positive constants C and ε such that,

wp′([a, a + θt]) ≤ Cθ(2−α)p′−ε wp′([a, a + t]),

for every a ∈ IR, t > 0 and θ ≥ 1.
(c) There exist positive constants C and ε such that,

(
wp′([a, a + θt])

θt

)1/p′

≤ Cθ
1
p
+1−α− ε

p′
w([a− t, a])

t
,

for every a ∈ IR, t > 0 and θ ≥ 1.

Proof.
(a) ⇒ (b) : By Lemma 4.1 (ii) we have that w ∈ RH−(p′).
Let I = [a, a + t]. Applying Hölder’s inequality and keeping in mind that

w ∈ H−(α, p),

wp′(I)
|I|

≥
(

w(I)
|I|

)p′

≥ C|I|(
1
p
−α+1)p′

∫ ∞

a+t

w(y)p′

(y − a)(2−α)p′
dy(4.1)

≥ C|I|(
1
p
−α+1)p′

∑
k≥0

1
(2k+1t)(2−α)p′

∫ a+2k+1t

a+2kt
w(y)p′dy.
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Since
∑

i≥k

(
1

2(2−α)p′

)i
= C

(
1

2(2−α)p′

)k
, by (4.1) and applying Fubini’s The-

orem,

wp′(I)
|I|

≥ C|I|(
1
p
−α+1)p′ 1

t(2−α)p′

∑
k≥0

∫ a+2k+1t

a+2kt
w(y)p′dy

∑
i≥k

(
1

2(2−α)p′

)i

= C|I|(
1
p
−α+1)p′

∑
i≥0

1
(2it)(2−α)p′

i∑
k=0

∫ a+2k+1t

a+2kt
w(y)p′dy

= C|I|(
1
p
−α+1)p′

∑
i≥0

1
(2it)(2−α)p′

∫ a+2i+1t

a+t
w(y)p′dy.

Therefore,

wp′(I)
|I|

≥ C|I|(
1
p
−α+1)p′

∑
i≥0

1
(2it)(2−α)p′

∫ a+2i+1t

a
w(y)p′dy

≥ C|I|(
1
p
−α+1)p′

∑
i≥0

∫ 2i+1t

2it

wp′([a, a + s])
s(2−α)p′

ds

s

= C|I|(
1
p
−α+1)p′

∫ ∞

t

wp′([a, a + s])
s(2−α)p′

ds

s
.

In consequence, ∫ ∞

t

wp′([a, a + s])
s(2−α)p′

ds

s
≤ C

wp′([a, a + t])
t(2−α)p′

.

Now, using Lemma 3.3 in [1] with ϕ(s) = wp′([a, a + s]) y r = (2 − α)p′,
there exist C and ε such that

ϕ(θt) ≤ Cθr−εϕ(t),

for every t > 0 and θ ≥ 1. That is,

wp′([a, a + θt]) ≤ Cθ(2−α)p′−εwp′([a, a + t]),

for every t > 0 and θ ≥ 1, This completes the proof of (a) ⇒ (b).

(b) ⇒ (a) : Let I = [a, a + t]. If (b) holds, we have that

(∫ ∞

a+t

w(y)p′

(y − a)(2−α)p′
dy

)1/p′

=

( ∞∑
k=0

∫ a+2k+1t

a+2kt

w(y)p′

(y − a)(2−α)p′
dy

)1/p′
(4.2)
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≤

( ∞∑
k=0

1
(2kt)(2−α)p′

wp′([a + t, a + t + 2k+1t])

)1/p′

≤ C

( ∞∑
k=0

(2k+1)(2−α)p′−ε

(2kt)(2−α)p′
wp′([a + t, a + 2t])

)1/p′

≤ C

(
1
t

∫ a+2t

a+t
w(y)p′dy

)1/p′

t
1
p′−2+α

.

Using the hypothesis w ∈ RH−(p′) we obtain that (4.2) is bounded by

C
1
t

∫ a+t

a
w(y)dy t

1
p′−2+α = C

w([a, a + t])

t
1
p
+2−α

,

which shows that w ∈ H−(α, p).

The proof of (b) ⇒ (c) is very simple and we shall omit it.

(c) ⇒ (b) : Taking θ = 1 in (c) we have that w ∈ RH−(p′). Using (c) and
Hölder’s inequality,(

wp′([a− t, a + θt])
θt

)1/p′

=

(
wp′([a− t, a])

θt
+

wp′([a, a + θt])
θt

)1/p′

≤

(
wp′([a− t, a])

θt

)1/p′

+ Cθ
1
p
+1−α− ε

p′

(
wp′([a− t, a])

t

)1/p′

.

We can suppose that 1
p +1−α− ε

p′ > 0, then taking into account that θ ≥ 1(
wp′([a− t, a− t + θt])

θt

)1/p′

≤

(
wp′([a− t, a + θt])

θt

)1/p′

≤ Cθ
1
p
+1−α− ε

p′

(
wp′([a− t, a])

t

)1/p′

.

From these inequalities with a = b + t we obtain that

wp′([b, b + θt]) ≤ Cθ(2−α)p′−ε wp′([b, b + t]),

which completes the proof. 2

Remark 4.3. It is easy to see that if wp′ belongs to A−
1 then, w ∈ H−(α, p).

On the other hand, applying Lemma 4.2 (b) ⇒ (a), it follows that if w(x) =
|x|γ with 0 < γ < 1/p − α + 1, then w belongs to H−(α, p), but w does not
belong to A−

1 . For 0 < α < 1/p, as an immediate consequence of Lemma 4.2
(c) ⇒ (a) it follows that if wp′ belongs to A−

p′+1 then, w belongs to H−(α, p).
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The next two lemmas show that if w belongs to H−(α, p), 1 < p < ∞,
then there exists η > 0 such that w belongs to H−(α, q) for every q : p−η <
q < p + η.

Lemma 4.4. Let 1 < p < ∞ and w ∈ H−(α, p). Then, there exists δ0 ∈
(0, 1) such that w ∈ H−(α, (p′δ)′) for any δ : δ0 < δ ≤ 1.

Proof. It is a simple variant of Lemma 3.13 in [1]. 2

Lemma 4.5. Let 1 < p < ∞ and w ∈ H−(α, p). Then, there exists τ0 > 1
such that w ∈ H−(α, (p′τ)′) for any 1 ≤ τ ≤ τ0.

Proof. Since w ∈ RH−(p′) applying Theorem 5.3 in [9], there exists
τ0 > 1 such that for every τ : 1 ≤ τ ≤ τ0 there exists a constant C such that

(
1

c− b

∫ c

b
wp′τ

) 1
p′τ

≤ C

(
1

b− a

∫ b

a
w

)
≤ C

(
1

b− a

∫ b

a
wp′
) 1

p′

,

(4.3)

for every a < b < c with c− b = 2(b− a). Let I = [a, b]. Using (4.3) we have
that,

∫ ∞

b

w(y)p′τ

(y − a)(2−α)p′τ
dy =

∑
k≥0

∫
2k|I|≤y−a≤2k+1|I|

w(y)p′τ

(y − a)(2−α)p′τ
dy

(4.4)

≤
∑
k≥0

1
(2k|I|)(2−α)p′τ

∫
2k|I|≤y−a≤2k+1|I|

w(y)p′τdy

≤ C
∑
k≥0

1
(2k|I|)(2−α)p′τ−1

(
1

2k|I|

∫
2k−1|I|≤y−a≤2k|I|

w(y)p′dy

)τ

Taking into account that τ > 1, (4.4) is bounded by

C
∑
k≥0

2k|I|

(
1

2k|I|

∫
2k−1|I|≤y−a≤2k|I|

w(y)p′

(y − a)(2−α)p′
dy

)τ

≤ C|I|1−τ

(∫
|I|
2
≤y−a

w(y)p′

(y − a)(2−α)p′
dy

)τ

.

Keeping in mind that w ∈ H−(α, p) we have,∫ ∞

b

w(y)p′τ

(y − a)(2−α)p′τ
dy ≤ C|I|1−τ

(
w([a, a + |I|/2])

|I|
|I|−1/p+α−1

)p′τ

= C

(
w(I)
|I|

1

|I|
1

(p′τ)′−α+1

)p′τ

,



20 WEYL FRACTIONAL INTEGRAL

which implies that w ∈ H−(α, (p′τ)′). 2

Lemma 4.6. Let 1 < p1 < p2 < ∞. Suppose that w ∈ H−(α, pi) for i = 1, 2.
Then w ∈ H−(α, p) for every p : p1 < p < p2.

Proof. This is an one-sided version of Lemma 3.15 in [1]. 2

Lemma 4.7. Let 1 < p < ∞ and w ∈ RH−(p′). There exists a constant
C such that for every f ∈ L̃p

w and every bounded interval I = [a, b], if we
denote Ĩ− = [a− |I|

2 , a] then,∫
I
|f(x)|dx ≤ C

w(Ĩ−)
|I|1/p

[f ]p,w.

Proof. Since w ∈ RH−(p′) by Theorema 5.3 in [9], there exists s > p′

such that w ∈ RH−(s), that is, there exists a constant C such that for every
bounded interval I, (

1
|I|

∫
I
w(x)sdx

)1/s

≤ C
w(Ĩ−)
|I|

.

From this fact, the proof follows as in Lemma 4.1 of [1]. 2

Lemma 4.8. Let 1 < p < ∞ and w ∈ H−(α, p). Then there exists a constant
C such that for every f ∈ L̃p

w and every bounded interval I = [a, b],∫ ∞

b

|f(y)|
(y − a)2−α

dy ≤ C
w(I)

|I|2+
1
p
−α

[f ]p,w.

Proof. Taking into account Lemma 4.4 and Lemma 4.5, the proof of this
lemma is similar to one in Lemma 4.4 of [1]. 2

Lemma 4.9. Let α > 0 and δ ≥ 0 such that 0 < α + δ < 1. Let w ∈ D−.
For a < b, we denote c = a+b

2 and I = [c, b]. Then, for every f ∈ Lw(δ),
there exists a constant C such that,

(i) ∫ ∞

b

|f(y)− fI |
(y − a)2−α

dy ≤ C‖f‖Lw(δ)

∫ ∞

c

w(y)
(y − a)2−α−δ

dy.

(ii) ∫ b

a

|f(y)− fI |
(y − a)1−α

dy ≤ C‖f‖Lw(δ)

∫ c

a

w(y)
(y − a)1−α−δ

dy.

Proof. The proof of (i) and (ii) are similar, then we only prove part (i).
For every j ≥ 0, let Ij = [a + 2j |I|, a + 2j+1|I|]. We observe that I0 =

[a + |I|, a + 2|I|] = [c, b] = I. Since f ∈ Lw(δ) we have that,∫ ∞

b

|f(y)− fI |
(y − a)2−α

dy =
∞∑

j=1

∫ a+2j+1|I|

a+2j |I|

|f(y)− fI |
(y − a)2−α

dy(4.5)
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≤
∞∑

j=1

1
(2j |I|)2−α

∫ a+2j+1|I|

a+2j |I|
|f(y)− fI0 |dy

≤
∞∑

j=1

1
(2j |I|)2−α

[∫ a+2j+1|I|

a+2j |I|
|f(y)− fIj |dy+2j |I|

j∑
k=1

|fIk
− fIk−1

|

]

≤
∞∑

j=1

1
(2j |I|)1−α

[
C‖f‖Lw(δ)w(Ij)(2j |I|)δ−1+

j∑
k=1

1
|Ik−1|

∫
Ik−1

|f(y)− fIk
|dy

]
.

Using that f ∈ Lw(δ) and w ∈ D− we obtain the estimate,
1

|Ik−1|

∫
Ik−1

|f(y)− fIk
|dy ≤ C‖f‖Lw(δ)w(Ik−1)(2k−1|I|)δ−1.

Then applying Fubini’s Theorem, (4.5) is bounded by

C‖f‖Lw(δ)

∞∑
j=1

1
(2j |I|)1−α

j∑
k=0

w(Ik)(2k|I|)δ−1

= C‖f‖Lw(δ)

∞∑
k=0

w(Ik)(2k|I|)δ−1
∞∑

j=k

1
(2j |I|)1−α

= C‖f‖Lw(δ)

∞∑
k=0

1
(2k|I|)2−α−δ

∫ a+2k+1|I|

a+2k|I|
w(y)dy

≤ C‖f‖Lw(δ)

∫ ∞

c

w(y)
(y − a)2−α−δ

dy,

as we wanted to prove. 2

5. Proof of the Theorems 2.3 and 2.4

Proof of the Theorem 2.3.
(i) ⇒ (ii) : Let w ∈ H−(α, p) and x0 ∈ IR. Given f ∈ L̃p

w let Ĩ+
α (f)

define as in (2.2). Choose a bounded interval I = [a, a + h]. We consider
I0 = [a + 2h, x0] if a + 2h ≤ x0 and I0 = ∅ if x0 < a + 2h, and we also define
I1 = [x0, a + 2h] if x0 < a + 2h and I1 = ∅ in the other case. We set

aI =
∫

I0

f(y)
(y − a)1−α

dy +
∫ ∞

x0

[
1− χI1(y)
(y − a)1−α

−
1− χ[x0,x0+1](y)

(y − x0)1−α

]
f(y)dy.

We shall show that aI is a finite constant.
Suppose that x0 < a+2h. Let n be a positive integer such that a+2nh >

x0 + 1 and |a− x0| ≤ 2n−1h. Then,

aI =
(∫ a+2nh

x0

+
∫ ∞

a+2nh

)[
1− χ[x0,a+2h](y)

(y − a)1−α
−

1− χ[x0,x0+1](y)
(y − x0)1−α

]
f(y)dy
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= J1 + J2.

For each y ≥ a + 2nh, by Mean Value Theorem, there exists θ : 0 < θ < 1
such that,∣∣∣∣ 1

(y − a)1−α
− 1

(y − x0)1−α

∣∣∣∣ ≤ C
|x0 − a|

|y − θa− (1− θ)x0|2−α
≤ C

|x0 − a|
|y − a|2−α

.

Then, applying Lemma 4.8, we have that

|J2| ≤ C|x0 − a|
∫ ∞

a+2nh

|f(y)|
|y − a|2−α

dy ≤ C|x0 − a|w([a, a + 2nh])

(2nh)2+
1
p
−α

[f ]p,w < ∞.

On the other hand, since f ∈ L̃p
w and using Lemma 4.7, we get

|J1| ≤
∫ a+2nh

a+2h

|f(y)|
(y − a)1−α

dy +
∫ a+2nh

x0+1

|f(y)|
(y − x0)1−α

dy

≤ 1
(2h)1−α

∫ a+2nh

a+2h
|f(y)|dy +

∫ a+2nh

x0+1
|f(y)|dy < ∞.

The case x0 ≥ a + 2h can be proved in a similar way.
Now, let

A(x) =
∫ a+2h

x

f(y)
(y − x)1−α

dy +
∫ ∞

a+2h

[
1

(y − x)1−α
− 1

(y − a)1−α

]
f(y)dy

(5.1)

= A1(x) + A2(x).

It follows that,

Ĩ+
α (f)(x) = A(x) + aI .(5.2)

We shall show that,∫
I
|Ĩ+

α (f)(x)− aI |dx ≤ C|I|α−1/pw(I−)[f ]p,w.

We observe that taking into account (5.2) and (5.1) it is sufficient to prove
that ∫

I
|Aj(x)|dx ≤ C|I|α−1/pw(I−)[f ]p,w,

for j = 1, 2. Applying Mean Value Theorem, Lemma 4.8 and Lemma 4.1
part (iii) for every x ∈ I = [a, a + h] we have that,

|A2(x)| ≤
∫ ∞

a+2h

∣∣∣∣ 1
(y − x)1−α

− 1
(y − a)1−α

∣∣∣∣ |f(y)|dy
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≤ Ch

∫ ∞

a+2h

|f(y)|
|y − a|2−α

dy ≤ Ch
w([a, a + 2h])

(2h)2+
1
p
−α

[f ]p,w

≤ C
w([a− h, a])

h
1+ 1

p
−α

[f ]p,w.

Therefore, ∫
I
|A2(x)|dx ≤ C|I|α−1/pw(I−)[f ]p,w.

With respect to A1(x), changing the order of integration and applying
Lemma 4.7, ∫ a+h

a
|A1(x)|dx ≤

∫ a+h

a

∫ a+2h

x

|f(y)|
(y − x)1−α

dydx

≤
∫ a+2h

a
|f(y)|

∫ y

a

dx

(y − x)1−α
dy ≤ Chα

∫ a+2h

a
|f(y)|dy

≤ Chα−1/pw([a− h, a])[f ]p,w,

which completes the proof of (i) ⇒ (ii).

The implication (ii) ⇒ (iii) is obvious.

(iii) ⇒ (i) Let a ∈ IR and h > 0. We consider f ≥ 0 such that sop(f) ⊆
[a + 4h,∞). For each x ∈ [a, a + h] we have that,

|I+
α (f)(x)− I+

α (f)[a+2h,a+3h]|

=
1
h

∫ a+3h

a+2h

∫ ∞

a+4h
f(y)

[
1

(y − t)1−α
− 1

(y − x)1−α

]
dydt.

Applying Mean Value Theorem, for each y ≥ a + 4h we obtain,

1
(y − t)1−α

− 1
(y − x)1−α

≥ C
|x− t|

(y − a)2−α
≥ C

h

(y − a)2−α
.

In consequence,

|I+
α (f)(x)− I+

α (f)[a+2h,a+3h]| ≥ Ch

∫ ∞

a+4h

f(y)
(y − a)2−α

dy.

Then, if f ∈ Lp
w, using (iii) we have that,

Ch2

∫ ∞

a+4h

f(y)
(y − a)2−α

dy ≤ 2
∫ a+3h

a
|I+

α (f)(x)− I+
α (f)[a,a+3h]|dx

≤ C(3h)βw([a− 3h, a])
[∫ (

f(y)
w(y)

)p

dy

]1/p

.
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Now, taking into account that β = α− 1/p it follows that,

h1/p−α+1

∫ ∞

a+4h

f(y)
(y − a + 3h)2−α

dy(5.3)

≤ C
w([a− 3h, a + 4h])

h

[∫ ∞

a+4h

(
f(y)
w(y)

)p

dy

]1/p

.

For each m > 2 we put,

fm(y) =
w(y)p′

(y − a + 3h)
2−α
p−1

χ[a+4h,a+2mh](y)χ{0≤w≤m}(y).

It is easy to check that fm ∈ Lp
w. Using (5.3) with fm and taking the limit,

we obtain that

h1/p−α+1

(∫ ∞

a+4h

w(y)p′

(y − a + 3h)(2−α)p′
dy

)1/p′

≤ C
w([a− 3h, a + 4h])

h
,

which shows that w ∈ H−(α, p). 2

Remark 5.1. By Theorem 2.1, if 0 ≤ β < 1, we can substitute in Theo-
rem 2.3, Lw(β) for L−w(β). That is not possible for −1 < β < 0. In fact, if
w and f are defined as in Remark 3.2 part (ii), then

I+
α (f)(x) =


Γ(α)
aα e−ax , x ≥ 0

|x|α
α + e−ax

aα

∫∞
a|x| e

−uuα−1du , x < 0.

Therefore, the same arguments used in Remark 3.2 imply that I+
α (f) /∈ Lw(β).

Proof of Theorem 2.4.
(i) ⇒ (ii) Let R > 0. For any a ∈ IR, applying Fubini’s Theorem and

taking into account that w is a locally integrable function, we have that∫ a+1

a

∫ x+R

x

w(y)
(y − x)1−α

dydx < ∞.

In consequence, for almost every x and every R > 0∫ x+R

x

w(y)
(y − x)1−α

dy < ∞.(5.4)

Let x0 satisfying (5.4). We consider

Ĩ+
α (f)(x) =

∫ ∞

−∞

[
χ[x0,∞)(y)
|y − x0|1−α

−
χ[x,∞)(y)
|y − x|1−α

]
f(y)dy.(5.5)

We shall show that if f ∈ Lw(0) then Ĩ+
α (f), defined as in (5.5), is finite for

every x satisfying (5.4). Fix x satisfying (5.4). Suppose that x0 < x and let
R ∈ IQ : x0 < x ≤ x0 + R/4. We consider the interval I = [x0 + R/2, x0 +
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R]. Taking into account that the function g(y) =
χ[x0,∞)(y)

|y−x0|1−α − χ[x,∞)(y)

|y−x|1−α is
integrable and

∫∞
−∞ g(y)dy = 0 we can write,

Ĩ+
α (f)(x) =

∫ ∞

−∞

[
χ[x0,∞)(y)
|y − x0|1−α

−
χ[x,∞)(y)
|y − x|1−α

]
[f(y)− fI ] dy

= I1(x) + I2(x),

where,

I1(x) =
∫ x0+R

x0

and I2(x) =
∫ ∞

x0+R
.

We shall prove

|Ĩ+
α (f)(x)| ≤ C‖f‖Lw(0)

[∫ x0+5R/4

x0

w(y)
(y − x0)1−α

dy +
∫ x+5R/4

x

w(y)
(y − x)1−α

dy

]
.

(5.6)

We observe that,

|I1(x)| ≤
∫ x0+R

x0

|f(y)− fI |
|y − x0|1−α

dy +
∫ x0+R

x

|f(y)− fI |
|y − x|1−α

dy

Let J = [x + R/2, x + R]. Applying Lemma 4.9 part (ii) we have that

|I1(x)| ≤
∫ x0+R

x0

|f(y)− fI |
|y − x0|1−α

dy(5.7)

+
∫ x+R

x

|f(y)− fJ |
|y − x|1−α

+|fI − fJ |
∫ x+R

x

dy

|y − x|1−α

≤ C‖f‖Lw(0)

∫ x0+R/2

x0

w(y)
(y − x0)1−α

dy + C‖f‖Lw(0)

∫ x+R/2

x

w(y)
(y − x)1−α

dy

+
Rα

α
|fI − fJ |.

Since x0 < x < x0 + R/4 and f ∈ Lw(0) we have,

Rα|fI − fJ | ≤ C‖f‖Lw(0)

∫ x0+5/4R

x0

w(y)
(y − x0)1−α

dy.

Then, by (5.7)

|I1(x)| ≤ C‖f‖Lw(0)

[∫ x0+5R/4

x0

w(y)
(y − x0)1−α

dy +
∫ x+5R/4

x

w(y)
(y − x)1−α

dy

]
.

Now, let us estimate I2. Applying Mean Value Theorem,

|I2(x)| ≤
∫ ∞

x0+R

∣∣∣∣ 1
|y − x0|1−α

− 1
|y − x|1−α

∣∣∣∣ |f(y)− fI |dy
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≤ Cα|x0 − x|
∫ ∞

x0+R

|f(y)− f[x0+R/2,x0+R]|
(y − x0)2−α

dy.

Using Lemma 4.9 part (i) and taking into account that w ∈ H−(α,∞) we
get,

|I2(x)| ≤ CαR‖f‖Lw(0)

∫ ∞

x0+R/2

w(y)
(y − x0)2−α

dy

≤ CαR‖f‖Lw(0)
w([x0, x0 + R/2])

R2−α

≤ Cα‖f‖Lw(0)

∫ x0+R/2

x0

w(y)
(y − x0)1−α

dy.

Then, if x0 < x < x0 + R/4 or in the case x0 −R/4 < x < x0, we have that
(5.6) holds. Since IR = ∪R∈IQ>0[x0−R/4, x0 +R/4], it follows that Ĩ+

α (f)(x)
is finite for almost every x.

Let us show that Ĩ+
α (f) ∈ Lw(α). For almost every x1 < x2, if we define

R = 4|x1 − x2|, we have that x1 < x2 ≤ x1 + R/4 and using (5.6) we get

|Ĩ+
α (f)(x1)− Ĩ+

α (f)(x2)|

≤
∫ ∞

−∞

∣∣∣∣ χ[x1,∞)(y)
(y − x1)1−α

−
χ[x2,∞)(y)

(y − x2)1−α

∣∣∣∣ |f(y)− f[x1+R/2,x1+R]|dy

≤ C‖f‖Lw(0)

[∫ x1+5|x1−x2|

x1

w(y)
(y − x1)1−α

dy +
∫ x2+5|x1−x2|

x2

w(y)
(y − x2)1−α

dy

]
.

Taking into account that w ∈ D− and using Proposition 3.3 it follows that
Ĩ+
α (f) ∈ Lw(α).
(ii) ⇒ (i) This implication is similar to (iii) ⇒ (i) in Theorem 2.3. 2

Corollary 5.2. Let α, δ ∈ IR+ such that 0 < α + δ < 1. The following
statements are equivalent.

(a) w ∈ H−(δ,∞) and the operator Iα can be extended to a linear bounded
operator Ĩ+

α : Lw(δ) −→ Lw(α + δ).
(b) w ∈ H−(α + δ,∞).

Proof. The proof is a simple variant of Corollary 2.12 in [1]. 2
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