BOUNDEDNESS OF THE WEYL FRACTIONAL INTEGRAL ON ONE-SIDED WEIGHTED LEBESGUE AND LIPSCHITZ SPACES

S. OMBROSI AND L. DE ROSA

ABSTRACT. In this paper we introduce the one-sided weighted spaces $\mathcal{L}^-_w(\beta)$, $-1 < \beta < 1$. The purpose of this definition is to obtain an extension of the Weyl fractional integral operator I^+_α from L^p_w into a suitable weighted space.

Under certain condition on the weight w, we have that $\mathcal{L}_w^-(0)$ coincides with the dual of the Hardy space $H^1_-(w)$. We prove for $0 < \beta < 1$, that $\mathcal{L}_w^-(\beta)$ consists of all functions satisfying a weighted Lipschitz condition. In order to give another characterization of $\mathcal{L}_w^-(\beta)$, $0 \le \beta < 1$, we also prove a one-sided version of John-Nirenberg Inequality.

Finally, we obtain necessary and sufficient conditions on the weight w for the boundedness of I_{α}^+ from L_w^p into $\mathcal{L}_w^-(\beta), -1 < \beta < 1$, and its extension to a bounded operator from $\mathcal{L}_w^-(0)$ into $\mathcal{L}_w^-(\alpha)$.

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I 1428 Ciudad de Buenos Aires, Argentina.

1. NOTATIONS, DEFINITIONS AND PREREQUISITES

Let $E \subset \mathbb{R}$ be a Lebesgue measurable set. We shall denote its Lebesgue measure by |E| and the characteristic function of E by χ_E .

As usual, a weight w is a measurable, non-negative and locally integrable function defined on \mathbb{R} .

Let w be a weight. Given a Lebesgue measurable set $E \subset \mathbb{R}$, its w-measure will be denote by $w(E) = \int_E w(t)dt$.

Let $1 . The weight w belongs to the class <math>A_p^-$ if there exists a constant C such that

$$\sup_{h>0} \left[\frac{1}{h^p} \int_a^{a+h} w(x) dx \left(\int_{a-h}^a w(x)^{-\frac{1}{p-1}} dx \right)^{p-1} \right] \le C,$$

²⁰⁰⁰ Mathematics Subject Classification. Primary: 26A33; Secondary: 42B25.

 $Key\ words\ and\ phrases.$ Weyl fractional integral, weights, weighted Lebesgue and Lipschitz spaces, weighted BMO.

This research has been partially supported by UBACYT 2000-2002 and CONICET.

for all real number a. In a similar way, w belongs to A_n^+ if

$$\sup_{h>0} \left[\frac{1}{h^p} \int_{a-h}^a w(x) dx \left(\int_a^{a+h} w(x)^{-\frac{1}{p-1}} dx \right)^{p-1} \right] \le C,$$

for all real number a. The class A_1^- is defined by the condition

$$\sup_{h>0} \left[\frac{1}{h} \int_{a}^{a+h} w(x) dx \right] \le Cw(a),$$

for almost every real number a. The weight w belongs to A_1^+ if

$$\sup_{h>0} \left[\frac{1}{h} \int_{a-h}^{a} w(x) dx \right] \le Cw(a),$$

for almost every a. These classes A_p^- and A_p^+ were introduced by E. Sawyer in [12]. We recall three basic results on these weights.

- (i) For 1 , a weight <math>w belongs to A_p^- if and only if $w^{1-p'}$ belongs to $A_{p'}^+$, where $\frac{1}{p} + \frac{1}{p'} = 1$.
 - (ii) If $1 \le p < q < \infty$, then $A_p^- \subset A_q^-$.
- (iii) If $1 and w belongs to <math>A_p^-$, then w belongs to $A_{p-\epsilon}^-$ for some

The proof of parts (i) and (ii) are very simple and (iii) can be found in Proposition 3 in [3].

In the sequel, for each bounded interval I = [a, b] we shall denote $I^- =$ [a - |I|, a] and $I^+ = [b, b + |I|].$

Let $1 \leq q < \infty$. A weight w satisfies the condition $RH^{-}(q)$ if there exists a constant C such that for every bounded interval I,

$$\left[\frac{1}{|I|}\int_{I}w(x)^{q}dx\right]^{1/q} \leq C\frac{1}{|I|}\int_{I^{-}}w(x)dx.$$

We shall say that a weight w belongs to D^- if there exists a constant C such that for every bounded interval I,

$$w(I \cup I^+) < Cw(I).$$

It is well known that if $w \in A_p^-$, $1 \le p < \infty$, then $w \in D^-$. Let w be a weight, $1 \le p < \infty$ and f a measurable function. We shall say that f belongs to L_w^p if

$$||f||_{p,w}^p = \int_{-\infty}^{\infty} \left[\frac{|f(x)|}{w(x)} \right]^p dx$$

is finite. The function f belongs to L_w^p if

$$[f]_{p,w}^p = \sup_{t>0} t^p \left| \left\{ x \in \mathbb{R} : \frac{|f(x)|}{w(x)} > t \right\} \right|$$

is finite.

Let $0 < \alpha < 1$. Given f a measurable function on IR, its Weyl fractional integral is defined by

$$I_{\alpha}^{+}f(x) = \int_{x}^{\infty} \frac{f(y)}{(y-x)^{1-\alpha}} dy,$$

whenever this integral is finite.

In the sequel, the letter C will denote a positive finite constant not necessarily the same at each occurrence. If $1 \le p \le \infty$ then p' will be its conjugate exponent, that is, 1/p + 1/p' = 1.

Let w be a weight and $-1 < \beta < 1$.

Definition 1.1. We say that a locally integrable function f defined on \mathbb{R} belongs to $\mathcal{L}_w(\beta)$, if there exists a constant C such that

$$\frac{1}{w(I)|I|^{\beta}} \int_{I} |f(y) - f_I| dy \le C,$$

for every bounded interval I, where $f_I = \frac{1}{|I|} \int_I f$. The least constant C will be denoted $||f||_{\mathcal{L}_w(\beta)}$.

The spaces $\mathcal{L}_w(\beta)$ were introduced by E. Harboure, O. Salinas and B. Viviani in [1]. They are a weighted version of the spaces $\mathcal{L}_{\lambda,p}$, for p=1, defined by J. Peetre in [8]. If w belongs to A_q^- , $1 \leq q < 2$, then $\mathcal{L}_w(0)$ is the dual space of the one-sided weighted Hardy space $H_-^1(w)$, see [10] and [11].

Definition 1.2. We say that a locally integrable function f defined on \mathbb{R} belongs to $\mathcal{L}_{w}^{-}(\beta)$, if there exists a constant C such that

$$\frac{1}{w(I^-)|I|^\beta}\int_I |f(y)-f_I|dy \le C,$$

for every bounded interval I. The least constant C satisfying this inequality will be denoted $||f||_{\mathcal{L}^{-}_{m}(\beta)}$.

In the following definition, we consider a one-sided version of the classes $H(\alpha, p)$ defined in [1].

Definition 1.3. Let $0 < \alpha < 1$ and 1 . We say that a weight <math>w belongs to $H^-(\alpha, p)$ if there exists a constant C such that for every bounded interval I = [a, b], the inequality

$$|I|^{\frac{1}{p}-\alpha+1} \left[\int_b^\infty \frac{w(y)^{p'}}{(y-a)^{(2-\alpha)p'}} dy \right]^{1/p'} \le C \frac{w(I)}{|I|},$$

holds.

2. Statement of the main results

Lemma 4.1 part (iii) shows that if w belongs to $H^-(\alpha, p)$, 1 , then <math>w belongs to D^- and therefore $\mathcal{L}_w(\beta) \subseteq \mathcal{L}_w^-(\beta)$ for every $\beta : -1 < \beta < 1$. The next theorem states that w belonging to D^- is a sufficient condition for the equality of these spaces, whenever $0 \le \beta < 1$.

Theorem 2.1. Let $0 \le \beta < 1$ and let w belong to D^- . Then, the spaces $\mathcal{L}_w(\beta)$ and $\mathcal{L}_w^-(\beta)$ are equal, and their norms are equivalent.

The next theorem gives us a characterization of the spaces $\mathcal{L}_w(\beta)$, $0 \le \beta < 1$, whenever w belongs to A_p^- . In the case $\beta = 0$, we shall prove this result using Proposition 3.6, which states a one-sided weighted version of John-Nirenberg Inequality.

Theorem 2.2. Let $0 \le \beta < 1$ and $1 \le p < \infty$. Let w be a weight such that w belongs to A_p^- . Then, $f \in \mathcal{L}_w(\beta)$ if and only if there exists a constant C such that

(2.1)
$$\int_{I^{-}} |f(x) - f_{I^{+}}|^{q} w(x)^{1-q} dx \le Cw(I^{-})|I|^{\beta q},$$

for all bounded interval I and every $q: 1 \leq q \leq p', q < \infty$.

The following two theorems state a sufficient and necessary condition on the weight w to obtain extensions of I_{α}^{+} defined on certain spaces.

Theorem 2.3. Let $0 < \alpha < 1, 1 < p < \infty$ and $\beta = \alpha - 1/p$. The following statements are equivalent.

- (i) The weight w belongs to $H^-(\alpha, p)$.
- (ii) The operator I_{α}^+ can be extended to a linear bounded operator $\widetilde{I_{\alpha}^+}$ from $\widetilde{L_w^p}$ into $\mathcal{L}_w^-(\beta)$ by means of

(2.2)
$$\widetilde{I_{\alpha}^{+}}(f)(x)$$

$$=-\int_{x_0}^x \frac{f(y)dy}{|y-x|^{1-\alpha}}+\int_{x_0}^\infty \left[\frac{1}{|y-x|^{1-\alpha}}-\frac{1-\chi_{[x_0,x_0+1]}(y)}{(y-x_0)^{1-\alpha}}\right]f(y)dy,$$

for an appropriate choice of $x_0 \in \mathbb{R}$.

(iii) The operator I_{α}^+ can be extended to a linear bounded operator $\widetilde{I_{\alpha}^+}$ from L_w^p into $\mathcal{L}_w^-(\beta)$, where $\widetilde{I_{\alpha}^+}$ is defined as in (2.2).

Theorem 2.4. Let w a weight and $0 < \alpha < 1$. The following statements are equivalent.

(i)
$$w \in H^-(\alpha, \infty)$$
.

(ii) The operator I_{α}^+ can be extended to a linear bounded operator $\widetilde{I_{\alpha}^+}: \mathcal{L}_w(0) \longrightarrow \mathcal{L}_w(\alpha)$ by means of

$$\widetilde{I_{\alpha}^{+}}(f)(x) = \int_{-\infty}^{\infty} \left[\frac{\chi_{[x_0,\infty)}(y)}{|y-x_0|^{1-\alpha}} - \frac{\chi_{[x,\infty)}(y)}{|y-x|^{1-\alpha}} \right] f(y) dy,$$

for an appropriate choice of $x_0 \in \mathbb{R}$.

Remark 2.5. Let $1 and <math>\beta = \alpha - 1/p < 0$.

- (i) It is easy to see that if w belongs to $RH^-(\frac{1}{1+\beta})$, then $L_w^{-1/\beta} \subseteq \mathcal{L}_w^-(\beta)$.
- (ii) By Lemma 4.4 in [9], if $w^{p'}$ belongs to $A^-_{-\beta p'+1}$ then w satisfies the condition $RH^-(p')$, and taking into account that $\frac{1}{1+\beta} < p'$, it follows that w belongs to $RH^-(\frac{1}{1+\beta})$.
- (iii) Theorem 6 in [4] states the fact that $w^{p'}$ belongs to $A^-_{-\beta p'+1}$ is a necessary and sufficient condition for the boundedness of I^+_{α} from L^p_w into $L^{-1/\beta}_w \subseteq \mathcal{L}^-_w(\beta)$.
- (iv) If $w^{p'}$ belongs to $A^-_{-\beta p'+1}$, since $w^{p'} \in A^-_{p'+1}$, we have that w belongs to $H^-(\alpha, p)$. However, there exist weights w belonging to $H^-(\alpha, p)$ such that $w^{p'}$ does not belong to $A^-_{p'+1}$, for example, $w(x) = |x|^{\gamma}$ for $-\beta \leq \gamma < 1 \beta$, see Remark 4.3.

In consequence, if $-1 < \beta < 0$ and $w^{p'}$ belongs to $A^-_{-\beta p'+1}$, the extension of I^+_{α} in Theorem 2.3 can be obtained from Theorem 6 in [4]. But, (iv) shows that Theorem 2.3 can be applied to a larger class of weights.

Remark 2.6. Let w be a weight. We shall say that a locally integrable function f defined on $I\!\!R$, belongs to $MW^-(w)$ if there exists a constant C such that

$$\frac{1}{|I|} \frac{1}{ess \ inf_{I^{-}} w} \int_{I} |f(y) - f_{I}| dy \le C,$$

for every bounded interval I.

- (i) By Definition 1.2, it follows that $MW^-(w) \subseteq \mathcal{L}_w^-(0)$. Moreover, if w belongs to A_1^- then $\mathcal{L}_w(0) \subseteq MW^-(w)$, and as a consequence of Theorem 2.1, $\mathcal{L}_w^-(0) = MW^-(w)$.
- (ii) Following the same lines of Theorem 7 in [7], it can be seen that, in the case $\alpha = 1/p$, the weight $w^{p'}$ belongs to A_1^- if and only if the operator I_{α}^+ is bounded from L_w^p into $MW^-(w)$. Also see [2].
 - (iii) If $w^{p'}$ belongs to A_1^- then, by Remark 4.3, w belongs to $H^-(\alpha, p)$.

In consequence, the fact that $w^{p'}$ belongs to A_1^- implies the boundedness of I_{α}^+ from L_w^p into $MW^-(w)$, is contained in Theorem 2.3.

3. The spaces
$$\mathcal{L}_w(\beta)$$
 and $\mathcal{L}_w^-(\beta)$

The next lemma will be used in the proof of Theorem 2.1.

Lemma 3.1. Let $-1 < \beta < 1$, f a locally integrable function defined on IR, and $w \in D^-$. The following statements are equivalent.

- (i) $f \in \mathcal{L}_w^-(\beta)$.
- (ii) There exists a constant C such that for every $a \in \mathbb{R}$ and h > 0,

$$\frac{1}{w([a-h/2,a])h^{\beta}} \int_{a}^{a+h} |f(y) - f_{[a+h/2,a+h]}| dy \le C.$$

(iii) There exists a constant C such that for every $a \in \mathbb{R}$ and h > 0,

$$\frac{1}{w([a-h/2,a])h^{\beta}} \int_{a}^{a+h} |f(y) - f_{[a+h,a+3h]}| dy \le C.$$

The constants C in (ii) and (iii) are equivalent to $||f||_{\mathcal{L}_{\infty}^{-}(\beta)}$.

Proof.

 $(i) \Rightarrow (ii)$. Using (i) and taking into account that $w \in D^-$, we have

$$\int_{a}^{a+h/2} |f(y) - f_{[a+h/2,a+h]}| dy$$

$$\leq \int_{a}^{a+h/2} |f(y) - f_{[a+h/4,a+h/2]}| dy + 2 \int_{a+h/4}^{a+h} |f(y) - f_{[a+h/2,a+h]}| dy$$

$$\leq 3 \int_{a}^{a+h/2} |f(y) - f_{[a,a+h/2]}| dy + 5 \int_{a+h/4}^{a+h} |f(y) - f_{[a+h/4,a+h]}| dy$$

$$\leq C \|f\|_{\mathcal{L}^{-}_{w}(\beta)} w([a-h/2,a])h^{\beta} + C \|f\|_{\mathcal{L}^{-}_{w}(\beta)} w([a-h/2,a+h/4])h^{\beta}$$

$$\leq C \|f\|_{\mathcal{L}^-_w(\beta)} w([a-h/2,a]) h^{\beta}.$$

From these inequalities and using (i) again, we have the estimate

$$\int_{a}^{a+h} |f(y) - f_{[a+h/2,a+h]}| dy$$

$$= \int_{a}^{a+h/2} |f(y) - f_{[a+h/2,a+h]}| dy + \int_{a+h/2}^{a+h} |f(y) - f_{[a+h/2,a+h]}| dy$$

$$\leq C \|f\|_{\mathcal{L}_{w}^{-}(\beta)} w([a-h/2,a]) h^{\beta} + C \|f\|_{\mathcal{L}_{w}^{-}(\beta)} w([a,a+h/2]) h^{\beta}$$

$$\leq C \|f\|_{\mathcal{L}_{w}^{-}(\beta)} w([a-h/2,a]) h^{\beta},$$

which shows that (ii) holds. In a similar way it can be proved that $(ii) \Rightarrow (iii)$ and $(iii) \Rightarrow (i)$.

As we have already mencioned if w belongs to D^- then, for every $-1 < \beta < 1$ we have the inclusion $\mathcal{L}_w(\beta) \subseteq \mathcal{L}_w^-(\beta)$. In order to prove Theorem 2.1, it will be sufficient to show that $\mathcal{L}_w^-(\beta) \subseteq \mathcal{L}_w(\beta)$.

Proof of Theorem 2.1. We suppose that $f \in \mathcal{L}_w^-(\beta)$. Let $a \in \mathbb{R}$ and h > 0. For each $j \ge 0$ we define $a_j = a + h/2^j$. Then,

(3.1)

$$\int_{a}^{a+h/2} |f(y) - f_{[a+h/2,a+h]}| dy = \sum_{j=1}^{\infty} \int_{a_{j+1}}^{a_{j}} |f(y) - f_{[a+h/2,a+h]}| dy$$

$$\leq \sum_{j=1}^{\infty} \int_{a_{j+1}}^{a_{j}} |f(y) - f_{[a_{j},a_{j-1}]}| dy + \sum_{j=2}^{\infty} \frac{h}{2^{j+1}} |f_{[a_{j},a_{j-1}]} - f_{[a_{1},a_{0}]}|$$

$$= I + II.$$

Taking into account that for each $j \geq 2$,

$$|f_{[a_j,a_{j-1}]} - f_{[a_1,a_0]}| \le \frac{2^j}{h} \int_{a_i}^{a_{j-1}} |f - f_{[a+h/2,a+h]}|$$

it follows that,

$$II \le \sum_{j=2}^{\infty} \frac{1}{2} \int_{a_j}^{a_{j-1}} |f - f_{[a+h/2,a+h]}| = \frac{1}{2} \int_{a}^{a+h/2} |f(y) - f_{[a+h/2,a+h]}| dy.$$

Then, by (3.1)

(3.2)
$$\int_{a}^{a+h/2} |f(y) - f_{[a+h/2,a+h]}| dy \le 2I.$$

Now, using part (iii) of Lemma 3.1 and keeping in mind that $\beta \geq 0$ we have that,

(3.3)
$$I \le C \sum_{i=1}^{\infty} \left(\frac{h}{2^{i}}\right)^{\beta} w([a_{j+2}, a_{j+1}]) \le C h^{\beta} w([a, a+h/4]).$$

From (3.2) and (3.3), and taking into account that $f \in \mathcal{L}_w^-(\beta)$, we get

$$\int_{a}^{a+h} |f(y) - f_{[a+h/2,a+h]}| dy$$

$$= \int_{a}^{a+h/2} |f(y) - f_{[a+h/2,a+h]}| dy + \int_{a+h/2}^{a+h} |f(y) - f_{[a+h/2,a+h]}| dy$$

$$\leq Ch^{\beta} w([a, a+h/4]) + Ch^{\beta} w([a, a+h/2])$$

$$\leq Ch^{\beta} w([a, a+h]).$$

Therefore,

$$\int_{a}^{a+h} |f(y) - f_{[a,a+h]}| dy \le 3 \int_{a}^{a+h} |f(y) - f_{[a+h/2,a+h]}| dy \le Ch^{\beta} w([a,a+h]),$$
 which shows that $f \in \mathcal{L}_w(\beta)$.

Remark 3.2. Let $-1 < \beta < 0$ and $w(t) = e^{-t}$. The weight w belongs to A_1^- however, we only have the strict inclusion $\mathcal{L}_w(\beta) \subset \mathcal{L}_w^-(\beta)$. For example, given a > 1 we consider the function

$$f(t) = \begin{cases} e^{-at} &, & t \ge 0\\ 1 &, & t < 0. \end{cases}$$

We observe, using Remark 2.5 part (i), that $f \in \mathcal{L}_w^-(\beta)$. On the other hand,

$$\frac{1}{h^{\beta}w([0,h])} \int_{0}^{h} |f - f_{[h,2h]}| = \frac{1}{h^{\beta}(1 - e^{-h})} \left[\frac{1 - e^{-ah}}{a} - \frac{e^{-ah}}{a} (1 - e^{-ah}) \right]$$

$$= \frac{(1 - e^{-ah})^{2}}{h^{\beta}(1 - e^{-h})a},$$

which tends to infinite whenever h tends to infinite. This implies that $f \notin \mathcal{L}_w(\beta)$.

The next proposition will be used in the proof of Theorem 2.2.

Proposition 3.3. Let $0 < \beta < 1$ and let w belong to D^- . Then, $f \in \mathcal{L}_w(\beta)$ if and only if, there exists a constant C such that (3.4)

$$|f(x) - f(y)| \le C \left[\int_x^{x + \frac{|y - x|}{2}} \frac{w(z)}{(z - x)^{1 - \beta}} dz + \int_y^{y + \frac{|y - x|}{2}} \frac{w(z)}{(z - y)^{1 - \beta}} dz \right],$$

for almost every real numbers x and y.

Proof. We suppose that $f \in \mathcal{L}_w(\beta)$. We shall show that for every h > 0 and almost every x,

$$(3.5) |f(x) - f_{[x+h/2,x+h]}| \le C \int_x^{x+h/2} \frac{w(z)}{(z-x)^{1-\beta}} dz.$$

For each $i \ge 0$ let $x_i = x + h/2^i$. If x is a Lebesgue point of f we have that,

$$|f(x) - f_{[x+h/2,x+h]}|$$

$$\leq |f(x) - f_{[x_{i+1},x_i]}| + |f_{[x_{i+1},x_i]} - f_{[x_1,x_0]}|$$

$$\leq |f(x) - f_{[x_{i+1},x_i]}| + \sum_{j=1}^{i} |f_{[x_{j+1},x_j]} - f_{[x_j,x_{j-1}]}|$$

$$\leq \sum_{j=1}^{\infty} |f_{[x_{j+1},x_j]} - f_{[x_j,x_{j-1}]}|.$$

For each $j \geq 1$, since $f \in \mathcal{L}_w(\beta)$ we obtain

$$|f_{[x_{j+1},x_j]} - f_{[x_j,x_{j-1}]}| \le C \frac{1}{(x_{j+1} - x_{j-1})^{1-\beta}} w([x_{j+1},x_{j-1}]).$$

From this inequality, (3.6) and taking into account that $w \in D^-$ we get,

$$|f(x) - f_{[x+h/2,x+h]}| \le C \sum_{j=1}^{\infty} \int_{x_{j+1}}^{x_{j-1}} \frac{w(z)}{(z-x)^{1-\beta}} dz$$

$$= C \int_{x}^{x+h} \frac{w(z)}{(z-x)^{1-\beta}} dz \leq C \int_{x}^{x+h/2} \frac{w(z)}{(z-x)^{1-\beta}} dz,$$

which shows that (3.5) holds. Let x < y two Lebesgue points of f. By (3.5) we have that,

$$|f(x) - f(y)| \leq |f(x) - f_{\left[\frac{x+y}{2}, y\right]}| + |f(y) - f_{\left[y + \frac{y-x}{2}, y + (y-x)\right]}|$$

$$+ |f_{\left[\frac{x+y}{2}, y\right]} - f_{\left[y + \frac{y-x}{2}, y + (y-x)\right]}|$$

$$\leq C \left[\int_{x}^{x + \frac{|y-x|}{2}} \frac{w(z)}{(z-x)^{1-\beta}} dz + \int_{y}^{y + \frac{|y-x|}{2}} \frac{w(z)}{(z-y)^{1-\beta}} dz \right]$$

$$+ |f_{\left[\frac{x+y}{2}, y\right]} - f_{\left[y + \frac{y-x}{2}, y + (y-x)\right]}|.$$

From the hypotheses $f \in \mathcal{L}_w(\beta)$ and $w \in D^-$, it follows that the third term on the right hand is bounded by

$$\begin{split} \frac{C}{y-x} \int_{x+\frac{y-x}{2}}^{y+(y-x)} |f(t)-f_{[x+\frac{y-x}{2},y+(y-x)]}| dt \\ & \leq \frac{C}{(y-x)^{1-\beta}} w([x,y+\frac{y-x}{2}]) \leq C \int_{x}^{(x+y)/2} \frac{w(z)}{(z-x)^{1-\beta}} dz. \end{split}$$

Therefore, by (3.7) we have that (3.4) holds.

Conversely, given a real number a and h > 0, by (3.4)

(3.8)
$$\int_{a}^{a+h} |f(x) - f_{[a,a+h]}| dx$$

$$\leq C \left[\int_{a}^{a+h} \int_{x}^{x+\frac{|y-x|}{2}} \frac{w(z)}{(z-x)^{1-\beta}} dz dx + \int_{a}^{a+h} \int_{y}^{y+\frac{|y-x|}{2}} \frac{w(z)}{(z-y)^{1-\beta}} dz dy \right].$$

Changing the order of integration and taking into account that $w \in D^-$, it follows that (3.8) is bounded by $Ch^{\beta}w([a,a+h])$. This completes the proof of the proposition.

The next two lemmas will be needed in the proof of Propotition 3.6.

Lemma 3.4. Let $w \in D^-$ and $f \in \mathcal{L}_w(0)$. Given two intervals $I \subseteq J$ the inequality

$$\frac{1}{w(J)} \int_{J} |f - f_{I^{+}}| \chi_{I^{-} \cup I} \le C \|f\|_{\mathcal{L}_{w}(0)},$$

holds with a constant C only depending on w.

Proof. Let I = (a, b) and J = (c, d). We consider $\alpha = \max\{a - |I|, c\}$ and $\beta = b + |I|$. Since $J \cap (I^- \cup I) \subseteq (\alpha, \beta)$ we have that,

(3.9)
$$\frac{1}{w(J)} \int_{J} |f - f_{I^{+}}| \chi_{I^{-} \cup I} \leq \frac{1}{w(J)} \int_{\alpha}^{\beta} |f - f_{I^{+}}|$$

$$\leq \frac{1}{w(J)} \left[\int_{\alpha}^{\beta} |f - f_{(\alpha,\beta)}| + \frac{(\beta - \alpha)}{|I^+|} \int_{I^+} |f - f_{(\alpha,\beta)}| \right]$$

We observe that $(\beta - \alpha) \leq 3|I|$, which implies

$$(3.9) \le \frac{4}{w(J)} \int_{\alpha}^{\beta} |f - f_{(\alpha,\beta)}|.$$

From the hypotheses $f \in \mathcal{L}_w(0)$ and $w \in D^-$, and taking into account that $(\alpha, \beta) \subseteq J \cup J^+$, (3.9) is bounded by

$$\frac{4}{w(J)} \|f\|_{\mathcal{L}_w(0)} w((\alpha, \beta)) \le C \|f\|_{\mathcal{L}_w(0)},$$

as we wanted to prove.

Lemma 3.5. Let $1 and <math>w \in A_p^-$. Then, there exists a constant C such that for every $\beta > 0$ the inequality

(3.10)
$$w(\{x \in I^- : w(x) < \beta\}) \le C \left[\beta \frac{|I^+|}{w(I^+)}\right]^{p'} w(I^+),$$

holds.

Proof. This lemma is a simple variant of Lemma 3.1 in [6].

The following proposition is a one-sided weighted version of John-Nirenberg Inequality. For its proof we shall use the method employed in Theorem 3 in [6] and the techniques of Lemma 1 in [5].

Proposition 3.6. Let f belong to $\mathcal{L}_w(0)$. Then,

(i) if $w \in A_1^-$ there exist positive constants C_1 y C_2 such that for every $\lambda > 0$,

$$w(\{x \in I^-: |f(x) - f_{I^+}|w(x)^{-1} > \lambda\}) \le C_1 e^{-C_2 \lambda/\|f\|_{\mathcal{L}_w(0)}} w(I^-)$$

holds for every bounded interval I.

(ii) if $w \in A_p^-, 1 there exists a positive constant <math>C_3$ such that for every $\lambda > 0$,

$$w(\lbrace x \in I^- : |f(x) - f_{I^+}|w(x)^{-1} > \lambda \rbrace) \le C_3 (1 + \lambda/\|f\|_{\mathcal{L}_w(0)})^{-p'} w(I^-)$$

holds for every bounded interval I.

Proof. Without loss of generality we can suppose that $||f||_{\mathcal{L}_w(0)} = 1$. For each $\lambda > 0$ and each bounded interval I, let

$$A(\lambda, I) = w(\{x \in I^- : |f(x) - f_{I^+}|w(x)^{-1} > \lambda\}),$$

and

(3.11)
$$\mathcal{A}(\lambda) = \sup \frac{A(\lambda, I)}{w(I^{-})},$$

where the supremum is taken over all $f: ||f||_{\mathcal{L}_w(0)} = 1$, and all bounded interval I. Thus, for every $\lambda > 0$, we have that $\mathcal{A}(\lambda) \leq 1$.

By Lemma 3.4 there exists a constant μ satisfying

(3.12)
$$\frac{1}{w(J)} \int_{J} |f - f_{I^{+}}| \chi_{I^{-} \cup I} \le \mu,$$

for every bounded intervals $I \subseteq J$ and every $f: ||f||_{\mathcal{L}_w(0)} = 1$.

Fixed I = [a, b], let $s > \mu$ and

$$\Omega_s = \{x : M_w^-(|f - f_{I^+}|\chi_{I^- \cup I}w^{-1})(x) > s\}.$$

Since Ω_s is an open set, we can write $\Omega_s = \bigcup_{i \geq 1} J_i$, where the $J_i's$ are its connected components.

We observe that if $J_i \cap I^- \neq \emptyset$ then $J_i \cap I^+ = \emptyset$. In fact, suppose that $J_i \cap I^- \neq \emptyset$ and let $J_i = (\alpha, \beta)$. If $\beta \geq b$ a simple variant of Lemma 2.1 in [12], shows that

$$\mu < s \le \frac{1}{w((\alpha, b))} \int_{\alpha}^{b} |f - f_{I^+}| \chi_{I^- \cup I}.$$

However, using (3.12) we have that

$$\frac{1}{w((\alpha,b))} \int_{\alpha}^{b} |f - f_{I^+}| \chi_{I^- \cup I} \le \mu.$$

In consequence, $\beta < b$ and $J_i \cap I^+ = \emptyset$.

Let $\{J_i: J_i \cap I^- \neq \emptyset\} = \{H_i\}_{i \geq 1}$. For each i,

(3.13)
$$H_i \subseteq I^- \cup I \text{ and } \frac{1}{w(H_i)} \int_{H_i} |f - f_{I^+}| = s.$$

By Lebesgue's Differentiation Theorem with respect to w for almost every $x \in I^- \setminus \bigcup_{i \geq 1} H_i$,

$$|f(x) - f_{I^+}|w(x)^{-1} \le s.$$

Using (3.13), (3.12) and keeping in mind that $w \in D^-$, we have that

(3.14)
$$\sum_{i\geq 1} w(H_i) = \frac{1}{s} \sum_{i\geq 1} \int_{H_i} |f - f_{I^+}| \le \frac{1}{s} \int_{I^- \cup I} |f - f_{I^+}|$$
$$\le \frac{1}{s} \mu w(I^- \cup I) \le \frac{1}{s} \mu C_w w(I^-).$$

Fixed $H_i = (a_i, b_i)$ we define the sequences $(x_k)_{k \geq 1}$ and $(y_k)_{k \geq 1}$ by $b_i - x_k = 2(b_i - y_k) = (2/3)^k |H_i|$, and the intervals $H_{i,k} = (x_k, y_k)$. Therefore,

(3.15)
$$H_{i} = \bigcup_{k>1} H_{i,k}^{-} , \quad \frac{1}{w(H_{i,k}^{+})} \int_{H_{i,k}^{+}} |f - f_{I^{+}}| \le s,$$

and

$$|f(x) - f_{I^+}|w(x)^{-1} \le \lambda$$
 a.e. $x \in I^- \setminus \bigcup_{k,i} H_{i,k}^-$.

Then,

$$A(\lambda, I) \le \sum_{i,k} w(\{x \in H_{i,k}^- : |f(x) - f_{I^+}|w(x)^{-1} > \lambda\}).$$

If $\mu < s \le \lambda$ and $0 < \gamma < \lambda$, we have that

(3.16)

$$\begin{split} A(\lambda,I) &\leq \sum_{i,k} w(\{x \in H_{i,k}^- : |f(x) - f_{H_{i,k}^+}|w(x)^{-1} > \lambda - \gamma\}) \\ &+ \sum_{i,k} w(\{x \in H_{i,k}^- : |f_{H_{i,k}^+} - f_{I^+}|w(x)^{-1} > \gamma\}) \\ &= I + II. \end{split}$$

From (3.11), (3.15) and (3.14) we obtain the estimate

(3.17)
$$I \leq \sum_{i,k} \mathcal{A}(\lambda - \gamma) w(H_{i,k}^{-}) = \mathcal{A}(\lambda - \gamma) \sum_{i} w(H_{i})$$

$$\leq \frac{C_w \mu}{s} \mathcal{A}(\lambda - \gamma) w(I^-).$$

On the other hand, (3.15) implies that

$$(3.18) |f_{H_{i,k}^+} - f_{I^+}| \le \frac{1}{|H_{i,k}^+|} \int_{H_{i,k}^+} |f - f_{I^+}| \le s \frac{w(H_{i,k}^+)}{|H_{i,k}^+|}.$$

If $w \in A_1^-$ there exists $\rho > 1$ such that for every i, k and almost every $x \in H_{i,k}^-$,

$$\frac{w(H_{i,k}^+)}{|H_{i,k}^+|} \le \rho w(x).$$

Then, using (3.18) we have

$$|f_{H_{i,k}^+} - f_{I^+}| \le \rho \ s \ ess \ inf_{x \in H_{i,k}^-} w(x).$$

In consequence,

$$w(\{x \in H_{i,k}^- : |f_{H_{i,k}^+} - f_{I^+}|w(x)^{-1} > \gamma\})$$

$$\leq w(\{x \in H_{i,k}^- : w(x) < \frac{\rho s}{\gamma} \ ess \ inf_{x \in H_{i,k}^-} w(x)\}).$$

Choosing $s = 2\mu C_w$ y $\gamma = \rho s$, if $\lambda > \gamma$ we have $\mu < s < \lambda$ and II = 0. Then, from (3.16) and (3.17) we obtain that

$$A(\lambda, I) \le \frac{1}{2} \mathcal{A}(\lambda - \gamma) w(I^{-}),$$

that is, if $\lambda > \gamma$,

$$A(\lambda) \le \frac{1}{2}A(\lambda - \gamma).$$

Now, proceeding as in Theorem 3 of [6], it can be obtained part (i) of this proposition.

In order to prove part (ii), we suppose that $w \in A_p^-, 1 . Using (3.18), Lemma 3.5 and taking into account that <math>w \in D^-$

$$w(\{x \in H_{i,k}^-: |f_{H_{i,k}^+} - f_{I^+}|w(x)^{-1} > \gamma\})$$

$$\leq w \left(\left\{ x \in H_{i,k}^{-} : w(x) < \frac{s}{\gamma} \frac{w(H_{i,k}^{+})}{|H_{i,k}^{+}|} \right\} \right) \leq C \left[\frac{s}{\gamma} \frac{w(H_{i,k}^{+})}{|H_{i,k}^{+}|} \frac{|H_{i,k}|}{w(H_{i,k})} \right]^{p'} w(H_{i,k})$$

$$\leq C \left(\frac{s}{\gamma} \right)^{p'} w(H_{i,k}^{-}).$$

By (3.15) and (3.14), we have

$$II \le C \left(\frac{s}{\gamma}\right)^{p'} \sum_{i,k} w(H_{i,k}^-) = C \left(\frac{s}{\gamma}\right)^{p'} \sum_{i} w(H_i) \le C \mu \frac{s^{p'-1}}{\gamma^{p'}} w(I^-).$$

Then, (3.16) and (3.17) imply that

$$A(\lambda,I) \le C\mu \left[\frac{A(\lambda-\gamma)}{s} + \frac{s^{p'-1}}{\gamma^{p'}} \right] w(I^-).$$

From this inequality, part (ii) follows as in Theorem 3 of [6].

Proposition 3.7. Let $0 < \beta < 1$ and 1 . Let <math>w be a weight such that $w^{1+\frac{\beta}{1-\beta}p}$ belongs to A_p^- . Then, $f \in \mathcal{L}_w(\beta)$ if and only if there exists a constant C such that (2.1) holds for all bounded interval I and every $q: 1 \le q \le p'/(1-\beta)$.

Proof. Suppose that (2.1) holds for every $q: 1 \le q \le p'/(1-\beta)$. Taking q=1 it is easy to show that $f \in \mathcal{L}_w(\beta)$. Conversely, let f belong to $\mathcal{L}_w(\beta)$. We observe that it will be sufficient to consider $q=p'/(1-\beta)$, because from this case and applying Hölder's inequality we obtain (2.1) for every $1 \le q < p'/(1-\beta)$. Given a bounded interval I and using Proposition 3.3, we have that

(3.19)

$$\int_{I^{-}} |f(x) - f_{I^{+}}|^{q} w(x)^{1-q} dx \leq \int_{I^{-}} \left[\frac{1}{|I^{+}|} \int_{I^{+}} |f(x) - f(y)| dy \right]^{q} w(x)^{1-q} dx
\leq C \int_{I^{-}} w(x)^{1-q} \left[\frac{1}{|I^{+}|} \int_{I^{+}} \left(\int_{x}^{x + \frac{|y-x|}{2}} \frac{w(z)}{(z-x)^{1-\beta}} dz + \int_{y}^{y + \frac{|y-x|}{2}} \frac{w(z)}{(z-y)^{1-\beta}} dz \right) dy \right]^{q} dx
\leq C \int_{I^{-}} w(x)^{1-q} \left(\int_{x}^{x + \frac{3|I|}{2}} \frac{w(z)}{(z-x)^{1-\beta}} dz \right)^{q} dx
+ \frac{C}{|I^{+}|^{q}} \int_{I^{-}} w(x)^{1-q} \left(\int_{I^{+}} \int_{y}^{y + \frac{3|I|}{2}} \frac{w(z)}{(z-y)^{1-\beta}} dz dy \right)^{q} dx
= A + B.$$

If we denote $J = I^- \cup I \cup I^+$ then we have the estimate

$$A \le C \int_{I^-} w(x)^{1-q} I_\beta^+(w\chi_J)(x)^q dx.$$

Our hypothesis $w^{1+\frac{\beta}{1-\beta}p}\in A_p^-$ is equivalent to

$$(3.20) w^{1-\frac{p'}{1-\beta}} \in A_{p'}^+,$$

where $p' = 1 + \frac{q}{s'}$ and $\frac{1}{s} = \frac{1}{q} + \beta$. Then, by Theorem 6 in [4] it follows that

$$A \leq C \left(\int_{-\infty}^{\infty} w(x)^{-\frac{s}{q'}} |w\chi_J(x)|^s dx \right)^{q/s} = C \left(\int_J w(x)^{s/q} dx \right)^{q/s}.$$

Since $q/s = q\beta + 1 > 1$, applying Hölder's inequality and taking into account that $w \in D^-$ we obtain

(3.21)
$$A \le C \int_{I} w(x) dx |J|^{\frac{q}{s}-1} \le Cw(I^{-})|I|^{\beta q}.$$

Let us estimate B. If we set $J' = I^+ \cup I^{++} \cup I^{+++}$, then

$$B \le \frac{C}{|I^+|^q} \int_{I^-} w(x)^{1-q} \left(\int_{I^+} I_{\beta}^+(w\chi_{J'})(y) dy \right)^q dx$$

Applying Hölder's inequality,

$$B \le \frac{C}{|I^+|^q} \left(\int_{I^-} w(x)^{1-q} dx \right) \left(\int_{I^+} w(y) dy \right)^{q/q'} \int_{I^+} w(y)^{1-q} I_{\beta}^+(w\chi_{J'})(y)^q dx.$$

From (3.20), it follows that $w^{1-q} \in A_q^+$ then, we have that

$$B \le C \int_{I^+} w(y)^{1-q} I_{\beta}^+(w\chi_{J'})(y)^q dx.$$

Proceeding as in the estimation of A and taking into account that $w \in D^-$ we obtain

(3.22)
$$B \le Cw(I^-)|I|^{\beta q}$$
.

As consequence of (3.19), (3.21) and (3.22) we get (2.1) and the proof of this proposition is complete.

Proof of Theorem 2.2. We shall prove that f belonging to $\mathcal{L}_w(\beta)$ is a sufficient condition for (2.1) holds. The fact that (2.1) is a necessary condition follows as in the previous proposition. For that, we shall consider different cases.

First of all, we assume that $\beta=0$ and $f\in\mathcal{L}_w(0)$. If $w\in A_1^-$ we have that (2.1) is an immediate consequence of Proposition 3.6 part (i). If $w\in A_p^-$, $1< p<\infty$, we have that $w\in A_{p-\epsilon}^-$ for some $\epsilon>0$. Then, by Proposition 3.6 part (ii), and proceeding as in Theorem 4 of [6], we obtain that f satisfies (2.1).

Let $0<\beta<1$ and $1< p<\infty.$ Since the weight w belongs to A_p^- there exists $0<\alpha<\beta$ such that $w^{1+\frac{\alpha}{1-\alpha}p}$ belongs to A_p^- . Proceeding as in (3.19), we have that

$$\int_{I^{-}} |f(x) - f_{I^{+}}|^{q} w(x)^{1-q} dx$$

$$\leq C \int_{I^{-}} w(x)^{1-q} \left[\frac{1}{|I^{+}|} \int_{I^{+}} \left(\int_{x}^{x + \frac{|y-x|}{2}} \frac{w(z)}{(z-x)^{1-\beta}} dz + \int_{y}^{y + \frac{|y-x|}{2}} \frac{w(z)}{(z-y)^{1-\beta}} dz \right) dy \right]^{q} dx$$

$$\leq C |I|^{(\beta-\alpha)q} \int_{I^{-}} w(x)^{1-q} \left(\int_{x}^{x + \frac{3|I|}{2}} \frac{w(z)}{(z-x)^{1-\alpha}} dz \right)^{q} dx$$

$$+ \frac{C}{|I|^{(\beta-\alpha-1)q}} \int_{I^{-}} w(x)^{1-q} \left(\int_{I^{+}} \int_{y}^{y + \frac{3|I|}{2}} \frac{w(z)}{(z-y)^{1-\alpha}} dz dy \right)^{q} dx$$

$$= |I|^{(\beta-\alpha)q} (A+B).$$

Substituting in the proof of the previous proposition α for β in the estimation of A and B we obtain this case.

Finally, we suppose that $0 < \beta < 1$ and p = 1. Since the weight w belongs to A_1^- it follows that w belongs to A_s^- for every $1 < s < \infty$. Then, by the previous case we obtain that (2.1) holds for every $1 \le q < \infty$.

4. The classes
$$H^-(\alpha, p)$$

The next lemma states necessary conditions for that a weight w belongs to $H^{-}(\alpha, p)$.

Lemma 4.1. Let $1 . If <math>w \in H^-(\alpha, p)$ then,

- (i) $w^{p'}$ belongs $to \in D^-$,
- (ii) w belongs to $\in RH^-(p')$,
- (iii) w belongs to $\in D^-$.

Proof. The proof of parts (i) and (ii) are similar to ones of Lemma 3.7 and Lemma 3.8, in [1], respectively. Applying Hölder's inequality and (ii), we obtain (iii).

Lemma 4.2. Let w be a weight. The following conditions are equivalent.

- (a) $w \in H^-(\alpha, p)$.
- (b) $w \in RH^-(p')$ and there exist positive constants C and ϵ such that,

$$w^{p'}([a, a + \theta t]) \le C\theta^{(2-\alpha)p'-\epsilon} w^{p'}([a, a + t]),$$

for every $a \in \mathbb{R}$, t > 0 and $\theta \ge 1$.

(c) There exist positive constants C and ϵ such that,

$$\left(\frac{w^{p'}([a,a+\theta t])}{\theta t}\right)^{1/p'} \le C\theta^{\frac{1}{p}+1-\alpha-\frac{\epsilon}{p'}} \frac{w([a-t,a])}{t},$$

for every $a \in \mathbb{R}$, t > 0 and $\theta \ge 1$.

Proof.

 $(a) \Rightarrow (b)$: By Lemma 4.1 (ii) we have that $w \in RH^{-}(p')$.

Let I = [a, a+t]. Applying Hölder's inequality and keeping in mind that $w \in H^-(\alpha, p)$,

$$(4.1) \frac{w^{p'}(I)}{|I|} \geq \left(\frac{w(I)}{|I|}\right)^{p'} \geq C|I|^{(\frac{1}{p}-\alpha+1)p'} \int_{a+t}^{\infty} \frac{w(y)^{p'}}{(y-a)^{(2-\alpha)p'}} dy$$

$$\geq C|I|^{(\frac{1}{p}-\alpha+1)p'} \sum_{k\geq 0} \frac{1}{(2^{k+1}t)^{(2-\alpha)p'}} \int_{a+2^kt}^{a+2^{k+1}t} w(y)^{p'} dy.$$

Since $\sum_{i\geq k} \left(\frac{1}{2^{(2-\alpha)p'}}\right)^i = C\left(\frac{1}{2^{(2-\alpha)p'}}\right)^k$, by (4.1) and applying Fubini's Theorem,

$$\frac{w^{p'}(I)}{|I|} \geq C|I|^{(\frac{1}{p}-\alpha+1)p'} \frac{1}{t^{(2-\alpha)p'}} \sum_{k\geq 0} \int_{a+2^k t}^{a+2^{k+1}t} w(y)^{p'} dy \sum_{i\geq k} \left(\frac{1}{2^{(2-\alpha)p'}}\right)^i
= C|I|^{(\frac{1}{p}-\alpha+1)p'} \sum_{i\geq 0} \frac{1}{(2^i t)^{(2-\alpha)p'}} \sum_{k=0}^i \int_{a+2^k t}^{a+2^{k+1}t} w(y)^{p'} dy
= C|I|^{(\frac{1}{p}-\alpha+1)p'} \sum_{i\geq 0} \frac{1}{(2^i t)^{(2-\alpha)p'}} \int_{a+t}^{a+2^{i+1}t} w(y)^{p'} dy.$$

Therefore,

$$\frac{w^{p'}(I)}{|I|} \geq C|I|^{(\frac{1}{p}-\alpha+1)p'} \sum_{i\geq 0} \frac{1}{(2^{i}t)^{(2-\alpha)p'}} \int_{a}^{a+2^{i+1}t} w(y)^{p'} dy$$

$$\geq C|I|^{(\frac{1}{p}-\alpha+1)p'} \sum_{i\geq 0} \int_{2^{i}t}^{2^{i+1}t} \frac{w^{p'}([a,a+s])}{s^{(2-\alpha)p'}} \frac{ds}{s}$$

$$= C|I|^{(\frac{1}{p}-\alpha+1)p'} \int_{t}^{\infty} \frac{w^{p'}([a,a+s])}{s^{(2-\alpha)p'}} \frac{ds}{s}.$$

In consequence,

$$\int_{t}^{\infty} \frac{w^{p'}([a, a+s])}{s^{(2-\alpha)p'}} \frac{ds}{s} \le C \frac{w^{p'}([a, a+t])}{t^{(2-\alpha)p'}}.$$

Now, using Lemma 3.3 in [1] with $\varphi(s) = w^{p'}([a, a+s])$ y $r = (2-\alpha)p'$, there exist C and ϵ such that

$$\varphi(\theta t) \le C\theta^{r-\epsilon}\varphi(t),$$

for every t > 0 and $\theta \ge 1$. That is,

$$w^{p'}([a, a+\theta t]) \le C\theta^{(2-\alpha)p'-\epsilon} w^{p'}([a, a+t]),$$

for every t > 0 and $\theta \ge 1$, This completes the proof of $(a) \Rightarrow (b)$.

$$(b) \Rightarrow (a)$$
: Let $I = [a, a + t]$. If (b) holds, we have that

(4.2)

$$\left(\int_{a+t}^{\infty} \frac{w(y)^{p'}}{(y-a)^{(2-\alpha)p'}} dy\right)^{1/p'} = \left(\sum_{k=0}^{\infty} \int_{a+2^k t}^{a+2^{k+1}t} \frac{w(y)^{p'}}{(y-a)^{(2-\alpha)p'}} dy\right)^{1/p'}$$

$$\leq \left(\sum_{k=0}^{\infty} \frac{1}{(2^k t)^{(2-\alpha)p'}} w^{p'} ([a+t,a+t+2^{k+1}t])\right)^{1/p'}$$

$$\leq C \left(\sum_{k=0}^{\infty} \frac{(2^{k+1})^{(2-\alpha)p'-\epsilon}}{(2^k t)^{(2-\alpha)p'}} w^{p'} ([a+t,a+2t])\right)^{1/p'}$$

$$\leq C \left(\frac{1}{t} \int_{a+t}^{a+2t} w(y)^{p'} dy\right)^{1/p'} t^{\frac{1}{p'}-2+\alpha}.$$

Using the hypothesis $w \in RH^{-}(p')$ we obtain that (4.2) is bounded by

$$C\frac{1}{t}\int_{a}^{a+t}w(y)dy\ t^{\frac{1}{p'}-2+\alpha}=C\frac{w([a,a+t])}{t^{\frac{1}{p}+2-\alpha}},$$

which shows that $w \in H^-(\alpha, p)$.

The proof of $(b) \Rightarrow (c)$ is very simple and we shall omit it.

 $(c) \Rightarrow (b)$: Taking $\theta = 1$ in (c) we have that $w \in RH^{-}(p')$. Using (c) and Hölder's inequality,

$$\left(\frac{w^{p'}([a-t,a+\theta t])}{\theta t}\right)^{1/p'} = \left(\frac{w^{p'}([a-t,a])}{\theta t} + \frac{w^{p'}([a,a+\theta t])}{\theta t}\right)^{1/p'} \\
\leq \left(\frac{w^{p'}([a-t,a])}{\theta t}\right)^{1/p'} + C\theta^{\frac{1}{p}+1-\alpha-\frac{\epsilon}{p'}}\left(\frac{w^{p'}([a-t,a])}{t}\right)^{1/p'}.$$

We can suppose that $\frac{1}{p} + 1 - \alpha - \frac{\epsilon}{p'} > 0$, then taking into account that $\theta \ge 1$

$$\left(\frac{w^{p'}([a-t,a-t+\theta t])}{\theta t}\right)^{1/p'} \leq \left(\frac{w^{p'}([a-t,a+\theta t])}{\theta t}\right)^{1/p'} \\
\leq C\theta^{\frac{1}{p}+1-\alpha-\frac{\epsilon}{p'}} \left(\frac{w^{p'}([a-t,a])}{t}\right)^{1/p'}.$$

From these inequalities with a = b + t we obtain that

$$w^{p'}([b, b + \theta t]) \le C\theta^{(2-\alpha)p'-\epsilon} w^{p'}([b, b + t]),$$

which completes the proof.

Remark 4.3. It is easy to see that if $w^{p'}$ belongs to A_1^- then, $w \in H^-(\alpha, p)$. On the other hand, applying Lemma 4.2 (b) \Rightarrow (a), it follows that if $w(x) = |x|^{\gamma}$ with $0 < \gamma < 1/p - \alpha + 1$, then w belongs to $H^-(\alpha, p)$, but w does not belong to A_1^- . For $0 < \alpha < 1/p$, as an immediate consequence of Lemma 4.2 (c) \Rightarrow (a) it follows that if $w^{p'}$ belongs to $A_{p'+1}^-$ then, w belongs to $H^-(\alpha, p)$.

The next two lemmas show that if w belongs to $H^-(\alpha, p), 1 , then there exists <math>\eta > 0$ such that w belongs to $H^-(\alpha, q)$ for every $q : p - \eta < q < p + \eta$.

Lemma 4.4. Let $1 and <math>w \in H^{-}(\alpha, p)$. Then, there exists $\delta_0 \in (0,1)$ such that $w \in H^{-}(\alpha, (p'\delta)')$ for any $\delta : \delta_0 < \delta \leq 1$.

Proof. It is a simple variant of Lemma 3.13 in [1].

Lemma 4.5. Let $1 and <math>w \in H^-(\alpha, p)$. Then, there exists $\tau_0 > 1$ such that $w \in H^-(\alpha, (p'\tau)')$ for any $1 \le \tau \le \tau_0$.

Proof. Since $w \in RH^-(p')$ applying Theorem 5.3 in [9], there exists $\tau_0 > 1$ such that for every $\tau : 1 \le \tau \le \tau_0$ there exists a constant C such that (4.3)

$$\left(\frac{1}{c-b}\int_b^c w^{p'\tau}\right)^{\frac{1}{p'\tau}} \le C\left(\frac{1}{b-a}\int_a^b w\right) \le C\left(\frac{1}{b-a}\int_a^b w^{p'}\right)^{\frac{1}{p'}},$$

for every a < b < c with c - b = 2(b - a). Let I = [a, b]. Using (4.3) we have that,

(4.4)

$$\int_{b}^{\infty} \frac{w(y)^{p'\tau}}{(y-a)^{(2-\alpha)p'\tau}} dy = \sum_{k\geq 0} \int_{2^{k}|I|\leq y-a\leq 2^{k+1}|I|} \frac{w(y)^{p'\tau}}{(y-a)^{(2-\alpha)p'\tau}} dy$$

$$\leq \sum_{k\geq 0} \frac{1}{(2^{k}|I|)^{(2-\alpha)p'\tau}} \int_{2^{k}|I|\leq y-a\leq 2^{k+1}|I|} w(y)^{p'\tau} dy$$

$$\leq C \sum_{k\geq 0} \frac{1}{(2^{k}|I|)^{(2-\alpha)p'\tau-1}} \left(\frac{1}{2^{k}|I|} \int_{2^{k-1}|I|\leq y-a\leq 2^{k}|I|} w(y)^{p'} dy \right)^{\tau}$$

Taking into account that $\tau > 1$, (4.4) is bounded by

$$C \sum_{k\geq 0} 2^k |I| \left(\frac{1}{2^k |I|} \int_{2^{k-1}|I| \leq y - a \leq 2^k |I|} \frac{w(y)^{p'}}{(y-a)^{(2-\alpha)p'}} dy \right)^{\tau}$$

$$\leq C|I|^{1-\tau} \left(\int_{\frac{|I|}{2} \leq y - a} \frac{w(y)^{p'}}{(y-a)^{(2-\alpha)p'}} dy \right)^{\tau}.$$

Keeping in mind that $w \in H^-(\alpha, p)$ we have,

$$\int_{b}^{\infty} \frac{w(y)^{p'\tau}}{(y-a)^{(2-\alpha)p'\tau}} dy \le C|I|^{1-\tau} \left(\frac{w([a,a+|I|/2])}{|I|}|I|^{-1/p+\alpha-1}\right)^{p'\tau}$$

$$= C\left(\frac{w(I)}{|I|} \frac{1}{|I|^{\frac{1}{(p'\tau)'}-\alpha+1}}\right)^{p'\tau},$$

which implies that $w \in H^-(\alpha, (p'\tau)')$.

Lemma 4.6. Let $1 < p_1 < p_2 < \infty$. Suppose that $w \in H^-(\alpha, p_i)$ for i = 1, 2. Then $w \in H^-(\alpha, p)$ for every $p : p_1 .$

Proof. This is an one-sided version of Lemma 3.15 in [1].

Lemma 4.7. Let $1 and <math>w \in RH^-(p')$. There exists a constant C such that for every $f \in \widetilde{L}_w^p$ and every bounded interval I = [a, b], if we denote $\widetilde{I}^- = [a - \frac{|I|}{2}, a]$ then,

$$\int_{I} |f(x)| dx \le C \frac{w(\widetilde{I}^{-})}{|I|^{1/p}} [f]_{p,w}.$$

Proof. Since $w \in RH^-(p')$ by Theorema 5.3 in [9], there exists s > p' such that $w \in RH^-(s)$, that is, there exists a constant C such that for every bounded interval I,

$$\left(\frac{1}{|I|}\int_I w(x)^s dx\right)^{1/s} \le C \ \frac{w(\widetilde{I}^-)}{|I|}.$$

From this fact, the proof follows as in Lemma 4.1 of [1].

Lemma 4.8. Let $1 and <math>w \in H^-(\alpha, p)$. Then there exists a constant C such that for every $f \in \widetilde{L_w^p}$ and every bounded interval I = [a, b],

$$\int_{b}^{\infty} \frac{|f(y)|}{(y-a)^{2-\alpha}} dy \le C \frac{w(I)}{|I|^{2+\frac{1}{p}-\alpha}} [f]_{p,w}.$$

Proof. Taking into account Lemma 4.4 and Lemma 4.5, the proof of this lemma is similar to one in Lemma 4.4 of [1].

Lemma 4.9. Let $\alpha > 0$ and $\delta \geq 0$ such that $0 < \alpha + \delta < 1$. Let $w \in D^-$. For a < b, we denote $c = \frac{a+b}{2}$ and I = [c,b]. Then, for every $f \in \mathcal{L}_w(\delta)$, there exists a constant C such that,

(i)

$$\int_b^\infty \frac{|f(y) - f_I|}{(y - a)^{2 - \alpha}} dy \le C ||f||_{\mathcal{L}_w(\delta)} \int_c^\infty \frac{w(y)}{(y - a)^{2 - \alpha - \delta}} dy.$$

(ii)

$$\int_a^b \frac{|f(y) - f_I|}{(y - a)^{1 - \alpha}} dy \le C ||f||_{\mathcal{L}_w(\delta)} \int_a^c \frac{w(y)}{(y - a)^{1 - \alpha - \delta}} dy.$$

Proof. The proof of (i) and (ii) are similar, then we only prove part (i). For every $j \geq 0$, let $I_j = [a+2^j|I|, a+2^{j+1}|I|]$. We observe that $I_0 = [a+|I|, a+2|I|] = [c, b] = I$. Since $f \in \mathcal{L}_w(\delta)$ we have that,

(4.5)
$$\int_{b}^{\infty} \frac{|f(y) - f_{I}|}{(y - a)^{2 - \alpha}} dy = \sum_{j=1}^{\infty} \int_{a+2^{j}|I|}^{a+2^{j+1}|I|} \frac{|f(y) - f_{I}|}{(y - a)^{2 - \alpha}} dy$$

$$\leq \sum_{j=1}^{\infty} \frac{1}{(2^{j}|I|)^{2-\alpha}} \int_{a+2^{j}|I|}^{a+2^{j+1}|I|} |f(y) - f_{I_{0}}| dy$$

$$\leq \sum_{j=1}^{\infty} \frac{1}{(2^{j}|I|)^{2-\alpha}} \left[\int_{a+2^{j}|I|}^{a+2^{j+1}|I|} |f(y) - f_{I_{j}}| dy + 2^{j}|I| \sum_{k=1}^{j} f_{I_{k}} - f_{I_{k-1}}| \right]$$

$$\leq \sum_{j=1}^{\infty} \frac{1}{(2^{j}|I|)^{1-\alpha}} \left[C ||f||_{\mathcal{L}_{w}(\delta)} w(I_{j}) (2^{j}|I|)^{\delta-1} + \sum_{k=1}^{j} \frac{1}{|I_{k-1}|} \int_{I_{k-1}} |f(y) - f_{I_{k}}| dy \right].$$

Using that $f \in \mathcal{L}_w(\delta)$ and $w \in D^-$ we obtain the estimate,

$$\frac{1}{|I_{k-1}|} \int_{I_{k-1}} |f(y) - f_{I_k}| dy \le C ||f||_{\mathcal{L}_w(\delta)} w(I_{k-1}) (2^{k-1}|I|)^{\delta - 1}.$$

Then applying Fubini's Theorem, (4.5) is bounded by

$$C\|f\|_{\mathcal{L}_{w}(\delta)} \sum_{j=1}^{\infty} \frac{1}{(2^{j}|I|)^{1-\alpha}} \sum_{k=0}^{j} w(I_{k}) (2^{k}|I|)^{\delta-1}$$

$$= C\|f\|_{\mathcal{L}_{w}(\delta)} \sum_{k=0}^{\infty} w(I_{k}) (2^{k}|I|)^{\delta-1} \sum_{j=k}^{\infty} \frac{1}{(2^{j}|I|)^{1-\alpha}}$$

$$= C\|f\|_{\mathcal{L}_{w}(\delta)} \sum_{k=0}^{\infty} \frac{1}{(2^{k}|I|)^{2-\alpha-\delta}} \int_{a+2^{k}|I|}^{a+2^{k+1}|I|} w(y) dy$$

$$\leq C\|f\|_{\mathcal{L}_{w}(\delta)} \int_{c}^{\infty} \frac{w(y)}{(y-a)^{2-\alpha-\delta}} dy,$$

as we wanted to prove.

5. Proof of the Theorems 2.3 and 2.4

Proof of the Theorem 2.3.

 $(i) \Rightarrow (ii) : \text{Let } w \in H^-(\alpha, p) \text{ and } x_0 \in \mathbb{R}. \text{ Given } f \in \widetilde{L_w^p} \text{ let } I_\alpha^+(f)$ define as in (2.2). Choose a bounded interval I = [a, a+h]. We consider $I_0 = [a+2h, x_0]$ if $a+2h \leq x_0$ and $I_0 = \emptyset$ if $x_0 < a+2h$, and we also define $I_1 = [x_0, a+2h]$ if $x_0 < a+2h$ and $I_1 = \emptyset$ in the other case. We set

$$a_I = \int_{I_0} \frac{f(y)}{(y-a)^{1-\alpha}} dy + \int_{x_0}^{\infty} \left[\frac{1-\chi_{I_1}(y)}{(y-a)^{1-\alpha}} - \frac{1-\chi_{[x_0,x_0+1]}(y)}{(y-x_0)^{1-\alpha}} \right] f(y) dy.$$

We shall show that a_I is a finite constant.

Suppose that $x_0 < a + 2h$. Let n be a positive integer such that $a + 2^n h > x_0 + 1$ and $|a - x_0| \le 2^{n-1}h$. Then,

$$a_{I} = \left(\int_{x_{0}}^{a+2^{n}h} + \int_{a+2^{n}h}^{\infty} \right) \left[\frac{1 - \chi_{[x_{0},a+2h]}(y)}{(y-a)^{1-\alpha}} - \frac{1 - \chi_{[x_{0},x_{0}+1]}(y)}{(y-x_{0})^{1-\alpha}} \right] f(y) dy$$

$$= J_1 + J_2.$$

For each $y \ge a + 2^n h$, by Mean Value Theorem, there exists $\theta : 0 < \theta < 1$ such that,

$$\left| \frac{1}{(y-a)^{1-\alpha}} - \frac{1}{(y-x_0)^{1-\alpha}} \right| \le C \frac{|x_0 - a|}{|y - \theta a - (1-\theta)x_0|^{2-\alpha}} \le C \frac{|x_0 - a|}{|y - a|^{2-\alpha}}.$$

Then, applying Lemma 4.8, we have that

$$|J_2| \le C|x_0 - a| \int_{a+2^n h}^{\infty} \frac{|f(y)|}{|y - a|^{2-\alpha}} dy \le C|x_0 - a| \frac{w([a, a+2^n h])}{(2^n h)^{2+\frac{1}{p}-\alpha}} [f]_{p,w} < \infty.$$

On the other hand, since $f \in \widetilde{L_w^p}$ and using Lemma 4.7, we get

$$|J_1| \leq \int_{a+2h}^{a+2^n h} \frac{|f(y)|}{(y-a)^{1-\alpha}} dy + \int_{x_0+1}^{a+2^n h} \frac{|f(y)|}{(y-x_0)^{1-\alpha}} dy$$

$$\leq \frac{1}{(2h)^{1-\alpha}} \int_{a+2h}^{a+2^n h} |f(y)| dy + \int_{x_0+1}^{a+2^n h} |f(y)| dy < \infty.$$

The case $x_0 \ge a + 2h$ can be proved in a similar way. Now, let

(5.1)
$$A(x) = \int_{x}^{a+2h} \frac{f(y)}{(y-x)^{1-\alpha}} dy + \int_{a+2h}^{\infty} \left[\frac{1}{(y-x)^{1-\alpha}} - \frac{1}{(y-a)^{1-\alpha}} \right] f(y) dy$$

$$= A_{1}(x) + A_{2}(x).$$

It follows that,

(5.2)
$$\widetilde{I_{\alpha}^{+}}(f)(x) = A(x) + a_{I}.$$

We shall show that,

$$\int_{I} |\widetilde{I_{\alpha}^{+}}(f)(x) - a_{I}| dx \le C|I|^{\alpha - 1/p} w(I^{-})[f]_{p,w}.$$

We observe that taking into account (5.2) and (5.1) it is sufficient to prove that

$$\int_{I} |A_{j}(x)| dx \le C|I|^{\alpha - 1/p} w(I^{-})[f]_{p,w},$$

for j=1,2. Applying Mean Value Theorem, Lemma 4.8 and Lemma 4.1 part (iii) for every $x\in I=[a,a+h]$ we have that,

$$|A_2(x)| \le \int_{a+2h}^{\infty} \left| \frac{1}{(y-x)^{1-\alpha}} - \frac{1}{(y-a)^{1-\alpha}} \right| |f(y)| dy$$

$$\leq Ch \int_{a+2h}^{\infty} \frac{|f(y)|}{|y-a|^{2-\alpha}} dy \leq Ch \frac{w([a,a+2h])}{(2h)^{2+\frac{1}{p}-\alpha}} [f]_{p,w}$$

$$\leq C\frac{w([a-h,a])}{h^{1+\frac{1}{p}-\alpha}} [f]_{p,w}.$$

Therefore,

$$\int_{I} |A_2(x)| dx \le C|I|^{\alpha - 1/p} w(I^-)[f]_{p,w}.$$

With respect to $A_1(x)$, changing the order of integration and applying Lemma 4.7,

$$\int_{a}^{a+h} |A_{1}(x)| dx \leq \int_{a}^{a+h} \int_{x}^{a+2h} \frac{|f(y)|}{(y-x)^{1-\alpha}} dy dx$$

$$\leq \int_{a}^{a+2h} |f(y)| \int_{a}^{y} \frac{dx}{(y-x)^{1-\alpha}} dy \leq Ch^{\alpha} \int_{a}^{a+2h} |f(y)| dy$$

$$\leq Ch^{\alpha-1/p} w([a-h,a])[f]_{p,w},$$

which completes the proof of $(i) \Rightarrow (ii)$.

The implication $(ii) \Rightarrow (iii)$ is obvious.

 $(iii)\Rightarrow (i)$ Let $a\in I\!\!R$ and h>0. We consider $f\geq 0$ such that $sop(f)\subseteq [a+4h,\infty).$ For each $x\in [a,a+h]$ we have that,

$$|I_{\alpha}^{+}(f)(x) - I_{\alpha}^{+}(f)_{[a+2h,a+3h]}|$$

$$= \frac{1}{h} \int_{a+2h}^{a+3h} \int_{a+4h}^{\infty} f(y) \left[\frac{1}{(y-t)^{1-\alpha}} - \frac{1}{(y-x)^{1-\alpha}} \right] dy dt.$$

Applying Mean Value Theorem, for each $y \ge a + 4h$ we obtain,

$$\frac{1}{(y-t)^{1-\alpha}} - \frac{1}{(y-x)^{1-\alpha}} \ge C \frac{|x-t|}{(y-a)^{2-\alpha}} \ge C \frac{h}{(y-a)^{2-\alpha}}.$$

In consequence,

$$|I_{\alpha}^{+}(f)(x) - I_{\alpha}^{+}(f)_{[a+2h,a+3h]}| \ge Ch \int_{a+4h}^{\infty} \frac{f(y)}{(y-a)^{2-\alpha}} dy.$$

Then, if $f \in L_w^p$, using (iii) we have that,

$$Ch^{2} \int_{a+4h}^{\infty} \frac{f(y)}{(y-a)^{2-\alpha}} dy \le 2 \int_{a}^{a+3h} |I_{\alpha}^{+}(f)(x) - I_{\alpha}^{+}(f)_{[a,a+3h]}| dx$$
$$\le C(3h)^{\beta} w([a-3h,a]) \left[\int \left(\frac{f(y)}{w(y)} \right)^{p} dy \right]^{1/p}.$$

Now, taking into account that $\beta = \alpha - 1/p$ it follows that,

(5.3)
$$h^{1/p-\alpha+1} \int_{a+4h}^{\infty} \frac{f(y)}{(y-a+3h)^{2-\alpha}} dy$$

$$\leq C \frac{w([a-3h,a+4h])}{h} \left[\int_{a+4h}^{\infty} \left(\frac{f(y)}{w(y)} \right)^{p} dy \right]^{1/p}.$$

For each m > 2 we put,

$$f_m(y) = \frac{w(y)^{p'}}{(y - a + 3h)^{\frac{2-\alpha}{p-1}}} \chi_{[a+4h,a+2^m h]}(y) \chi_{\{0 \le w \le m\}}(y).$$

It is easy to check that $f_m \in L_w^p$. Using (5.3) with f_m and taking the limit, we obtain that

$$h^{1/p-\alpha+1} \left(\int_{a+4h}^{\infty} \frac{w(y)^{p'}}{(y-a+3h)^{(2-\alpha)p'}} dy \right)^{1/p'} \le C \frac{w([a-3h,a+4h])}{h},$$

which shows that $w \in H^-(\alpha, p)$.

Remark 5.1. By Theorem 2.1, if $0 \le \beta < 1$, we can substitute in Theorem 2.3, $\mathcal{L}_w(\beta)$ for $\mathcal{L}_w^-(\beta)$. That is not possible for $-1 < \beta < 0$. In fact, if w and f are defined as in Remark 3.2 part (ii), then

$$I_{\alpha}^{+}(f)(x) = \begin{cases} \frac{\Gamma(\alpha)}{a^{\alpha}} e^{-ax} &, x \ge 0\\ \frac{|x|^{\alpha}}{\alpha} + \frac{e^{-ax}}{a^{\alpha}} \int_{a|x|}^{\infty} e^{-u} u^{\alpha - 1} du &, x < 0. \end{cases}$$

Therefore, the same arguments used in Remark 3.2 imply that $I_{\alpha}^{+}(f) \notin \mathcal{L}_{w}(\beta)$.

Proof of Theorem 2.4.

 $(i) \Rightarrow (ii)$ Let R > 0. For any $a \in \mathbb{R}$, applying Fubini's Theorem and taking into account that w is a locally integrable function, we have that

$$\int_a^{a+1} \int_x^{x+R} \frac{w(y)}{(y-x)^{1-\alpha}} dy dx < \infty.$$

In consequence, for almost every x and every R > 0

(5.4)
$$\int_{x}^{x+R} \frac{w(y)}{(y-x)^{1-\alpha}} dy < \infty.$$

Let x_0 satisfying (5.4). We consider

(5.5)
$$\widetilde{I_{\alpha}^{+}}(f)(x) = \int_{-\infty}^{\infty} \left[\frac{\chi_{[x_{0},\infty)}(y)}{|y - x_{0}|^{1-\alpha}} - \frac{\chi_{[x,\infty)}(y)}{|y - x|^{1-\alpha}} \right] f(y) dy.$$

We shall show that if $f \in \mathcal{L}_w(0)$ then $I_{\alpha}^+(f)$, defined as in (5.5), is finite for every x satisfying (5.4). Fix x satisfying (5.4). Suppose that $x_0 < x$ and let $R \in \mathbb{Q} : x_0 < x \le x_0 + R/4$. We consider the interval $I = [x_0 + R/2, x_0 + R/4, x_0]$

R]. Taking into account that the function $g(y) = \frac{\chi_{[x_0,\infty)}(y)}{|y-x_0|^{1-\alpha}} - \frac{\chi_{[x,\infty)}(y)}{|y-x|^{1-\alpha}}$ is integrable and $\int_{-\infty}^{\infty} g(y)dy = 0$ we can write,

$$\widetilde{I_{\alpha}^{+}}(f)(x) = \int_{-\infty}^{\infty} \left[\frac{\chi_{[x_{0},\infty)}(y)}{|y-x_{0}|^{1-\alpha}} - \frac{\chi_{[x,\infty)}(y)}{|y-x|^{1-\alpha}} \right] [f(y) - f_{I}] dy$$

$$= I_{1}(x) + I_{2}(x),$$

where,

$$I_1(x) = \int_{x_0}^{x_0 + R}$$
 and $I_2(x) = \int_{x_0 + R}^{\infty}$.

We shall prove

(5.6)

$$|\widetilde{I_{\alpha}^{+}}(f)(x)| \le C||f||_{\mathcal{L}_{w}(0)} \left[\int_{x_{0}}^{x_{0}+5R/4} \frac{w(y)}{(y-x_{0})^{1-\alpha}} dy + \int_{x}^{x+5R/4} \frac{w(y)}{(y-x)^{1-\alpha}} dy \right].$$

We observe that,

$$|I_1(x)| \le \int_{x_0}^{x_0+R} \frac{|f(y) - f_I|}{|y - x_0|^{1-\alpha}} dy + \int_x^{x_0+R} \frac{|f(y) - f_I|}{|y - x|^{1-\alpha}} dy$$

Let J = [x + R/2, x + R]. Applying Lemma 4.9 part (ii) we have that

$$(5.7) |I_{1}(x)| \leq \int_{x_{0}}^{x_{0}+R} \frac{|f(y)-f_{I}|}{|y-x_{0}|^{1-\alpha}} dy$$

$$+ \int_{x}^{x+R} \frac{|f(y)-f_{J}|}{|y-x|^{1-\alpha}} + |f_{I}-f_{J}| \int_{x}^{x+R} \frac{dy}{|y-x|^{1-\alpha}}$$

$$\leq C ||f||_{\mathcal{L}_{w}(0)} \int_{x_{0}}^{x_{0}+R/2} \frac{w(y)}{(y-x_{0})^{1-\alpha}} dy + C ||f||_{\mathcal{L}_{w}(0)} \int_{x}^{x+R/2} \frac{w(y)}{(y-x)^{1-\alpha}} dy$$

$$+ \frac{R^{\alpha}}{\alpha} |f_{I}-f_{J}|.$$

Since $x_0 < x < x_0 + R/4$ and $f \in \mathcal{L}_w(0)$ we have,

$$R^{\alpha}|f_I - f_J| \le C||f||_{\mathcal{L}_w(0)} \int_{x_0}^{x_0 + 5/4R} \frac{w(y)}{(y - x_0)^{1-\alpha}} dy.$$

Then, by (5.7)

$$|I_1(x)| \le C||f||_{\mathcal{L}_w(0)} \left[\int_{x_0}^{x_0 + 5R/4} \frac{w(y)}{(y - x_0)^{1 - \alpha}} dy + \int_x^{x + 5R/4} \frac{w(y)}{(y - x)^{1 - \alpha}} dy \right].$$

Now, let us estimate I_2 . Applying Mean Value Theorem,

$$|I_2(x)| \le \int_{x_0+R}^{\infty} \left| \frac{1}{|y-x_0|^{1-\alpha}} - \frac{1}{|y-x|^{1-\alpha}} \right| |f(y) - f_I| dy$$

$$\leq C_{\alpha}|x_0 - x| \int_{x_0 + R}^{\infty} \frac{|f(y) - f_{[x_0 + R/2, x_0 + R]}|}{(y - x_0)^{2 - \alpha}} dy.$$

Using Lemma 4.9 part (i) and taking into account that $w \in H^{-}(\alpha, \infty)$ we

$$|I_{2}(x)| \leq C_{\alpha}R||f||_{\mathcal{L}_{w}(0)} \int_{x_{0}+R/2}^{\infty} \frac{w(y)}{(y-x_{0})^{2-\alpha}} dy$$

$$\leq C_{\alpha}R||f||_{\mathcal{L}_{w}(0)} \frac{w([x_{0},x_{0}+R/2])}{R^{2-\alpha}}$$

$$\leq C_{\alpha}||f||_{\mathcal{L}_{w}(0)} \int_{x_{0}}^{x_{0}+R/2} \frac{w(y)}{(y-x_{0})^{1-\alpha}} dy.$$

Then, if $x_0 < x < x_0 + R/4$ or in the case $x_0 - R/4 < x < x_0$, we have that (5.6) holds. Since $IR = \bigcup_{R \in \mathbb{Q} > 0} [x_0 - R/4, x_0 + R/4]$, it follows that $I_{\alpha}^+(f)(x)$ is finite for almost every x.

Let us show that $I_{\alpha}^{+}(f) \in \mathcal{L}_{w}(\alpha)$. For almost every $x_1 < x_2$, if we define $R = 4|x_1 - x_2|$, we have that $x_1 < x_2 \le x_1 + R/4$ and using (5.6) we get

$$|\widetilde{I_{\alpha}^{+}}(f)(x_{1}) - \widetilde{I_{\alpha}^{+}}(f)(x_{2})|$$

$$\leq \int_{-\infty}^{\infty} \left| \frac{\chi_{[x_{1},\infty)}(y)}{(y-x_{1})^{1-\alpha}} - \frac{\chi_{[x_{2},\infty)}(y)}{(y-x_{2})^{1-\alpha}} \right| |f(y) - f_{[x_{1}+R/2,x_{1}+R]}| dy$$

$$\leq C ||f||_{\mathcal{L}_{w}(0)} \left[\int_{x_{1}}^{x_{1}+5|x_{1}-x_{2}|} \frac{w(y)}{(y-x_{1})^{1-\alpha}} dy + \int_{x_{2}}^{x_{2}+5|x_{1}-x_{2}|} \frac{w(y)}{(y-x_{2})^{1-\alpha}} dy \right].$$

Taking into account that $w \in D^-$ and using Proposition 3.3 it follows that

 $(ii) \Rightarrow (i)$ This implication is similar to $(iii) \Rightarrow (i)$ in Theorem 2.3.

Corollary 5.2. Let $\alpha, \delta \in \mathbb{R}^+$ such that $0 < \alpha + \delta < 1$. The following statements are equivalent.

(a) $w \in H^-(\delta, \infty)$ and the operator I_{α} can be extended to a linear bounded operator $\widetilde{I_{\alpha}^+}: \mathcal{L}_w(\delta) \longrightarrow \mathcal{L}_w(\alpha + \delta)$. (b) $w \in H^-(\alpha + \delta, \infty)$.

Proof. The proof is a simple variant of Corollary 2.12 in [1].

References

- [1] Harboure, E., Salinas, O. and Viviani, B. Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces, Trans. Amer. Math. Soc. 349 (1997) 235-255.
- Macías, R. A. and Riveros, M. S. One-sided extrapolation at infinity and singular integrals, Proc. Roy. Soc. Edinburgh 130 A (2000) 1081-1102.
- Martín-Reyes, F. New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Amer. Math. Soc. 117 (3) (1993) 691-698.

- [4] Martín–Reyes, F. J., Pick, L. and de la Torre, A. A_{∞}^+ condition, Canad. J. Math. **45** (6) (1993) 1231-1244.
- [5] Martín-Reyes, F. and de la Torre, A. One-sided BMO spaces, J. London Math. Soc. 49 (2) (1994) 529-542.
- [6] Muckenhoupt, B. and Wheeden, R. Weighted bounded mean oscillation and the Hilbert transform, Studia Math. 54 (1976) 221-237.
- [7] Muckenhoupt, B. and Wheeden, R. Weighted inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974) 261-274.
- [8] Peetre, J. On the theory of $\mathcal{L}_{p,\lambda}$ spaces, J. Funct. Anal. 4 (1969) 71-87.
- [9] Riveros, M. S. and de la Torre, A. On the best ranges for A_p^+ and RH_r^+ , Czechoslovak Math. J. **51** (126) (2001) 285-301.
- [10] de Rosa, L. and Segovia, C. Weighted H^p spaces for one-sided maximal functions, Contemp. Math. A. M. S. 189 (1995) 161-183.
- [11] de Rosa, L. and Segovia, C. Dual spaces for one-sided weighted Hardy spaces, Rev. Un. Mat. Argentina 40 (3 and 4) (1997) 49-71.
- [12] Sawyer, E. Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 (1986) 53-61.