An interpolation theorem between one-sided Hardy spaces

S. Ombrosi, C. Segovia, R. Testoni

Abstract

In this paper we generalize an interpolation result due to J.-O. Strömberg and A. Torchinsky ([6]) to the case of one-sided Hardy spaces. This generalization is important in the study of the weak type (1,1) for lateral strongly singular operators ([1]). We shall need an atomic decomposition in which for every atom there exists another supported contiguously at its right. In order to obtain this decomposition we have developed a rather simple technique to break up an atom into a sum of others atoms.

1 Definitions and prerequisites

Let f(x) be a Lebesgue measurable function defined on \mathbb{R} . The one-sided Hardy-Littlewood maximal functions $M^+f(x)$ and $M^-f(x)$ are defined as

$$M^+f(x) = \sup_{h>0} \frac{1}{h} \int_x^{x+h} |f(t)| dt$$
 and $M^-f(x) = \sup_{h>0} \frac{1}{h} \int_{x-h}^x |f(t)| dt$.

As usual, a weight ω is a measurable and non-negative function. If $E \subset \mathbb{R}$ is a Lebesgue measurable set, we denote its ω -measure by $\omega(E) = \int_E \omega(t) dt$. A function f(x) belongs to L^s_ω , $0 < s < \infty$, if $||f||_{L^s_\omega} = \left(\int_{-\infty}^\infty |f(x)|^s \, \omega(x) dx\right)^{1/s}$ is finite.

A weight ω belongs to the class A_s^+ , $1 < s < \infty$, defined by E. Sawyer in [5], if there exists a constant $C_{\omega,s}$ such that if $-\infty < a < b < c < \infty$ then

$$\left(\int_{a}^{b} \omega(t)dt\right) \left(\int_{b}^{c} \omega(t)^{-\frac{1}{s-1}} dt\right)^{s-1} \leq C_{\omega,s} \left(c-a\right)^{s},$$

In the limit case of s=1 we say that ω belongs to the class A_1^+ if, and only if, $M^-\omega(x) \leq C_{\omega,1}\omega(x)$ a.e. We also consider the class $A_\infty^+ = \bigcup_{s\geq 1} A_s^+$.

In general a weight belonging to the A_{∞}^+ can be equal to zero in a set with positive measure. For simplicity in this paper we shall assume all weights being positive almost everywhere.

As usual, $C_0^{\infty}(\mathbb{R})$ denotes the set of all functions with compact support having derivatives of all orders. We denote by \mathcal{D} the space of all functions in

 $C_0^{\infty}(\mathbb{R})$ equipped with the usual topology and by \mathcal{D}' the space of distributions on \mathbb{R} .

Given a positive integer γ and $x \in \mathbb{R}$, we shall say a function ψ in $C_0^{\infty}(\mathbb{R})$, belongs to the class $\Phi_{\gamma}(x)$ if there exists a bounded interval $I_{\psi} = [x, b]$ containing the support of ψ such that $D^{\gamma}\psi$ satisfies

$$|I_{\psi}|^{\gamma+1} \|D^{\gamma}\psi\|_{\infty} \leq 1.$$

For $f \in \mathcal{D}'$ we consider the one-sided maximal function

$$f_{+,\gamma}^*(x) = \sup\{|\langle f, \psi \rangle| : \psi \in \Phi_{\gamma}(x)\}.$$

Let $\omega \in A_s^+$, $0 and <math>\gamma$ a positive integer such that $p(\gamma + 1) > s$. We say that a distribution f in \mathcal{D}' belongs to $H_+^p(\omega)$ if the "p-norm" $||f||_{H_+^p(\omega)} = \left(\int_{-\infty}^{\infty} f_{+,\gamma}^*(x)^p \omega(x) dx\right)^{1/p}$ is finite. These spaces have been defined by L. de Rosa and C. Segovia in [3]. They also prove in [4] that definition does not depend on γ .

Let N be an integer. A function a(x) defined on \mathbb{R} is called a (∞, N) -atom if there exists an interval I containing the support of a(x), such that

- (i) $||a||_{\infty} \leq 1$.
- (ii) The identity $\int_I a(y)y^k dy = 0$ holds for every integer $k, 0 \le k \le N$.

The following theorem gives an atomic decomposition of the $H^p_+(\omega)$ spaces:

Theorem 1 Let $\omega \in A_s^+$ and $0 . Then there is an integer <math>N(p,\omega)$ with the following property: given any $f \in H_+^p(\omega)$ and $N \geq N(p,\omega)$, we can find a sequence $\{\lambda_k\}$ of positive coefficients and a sequence $\{a_k\}$ of (∞,N) -atoms with support contained in intervals $\{I_k\}$ respectively, such that the sum $\sum_k \lambda_k a_k$ converges unconditionally to f both in the sense of distributions and in the $H_+^p(\omega)$ -norm. Moreover

$$C_1 \left\| \sum \lambda_k \chi_{I_k} \right\|_{L^p_\omega} \le \|f\|_{H^p_+(\omega)},$$

holds with $C_1 > 0$ not depending on f.

Conversely, if we have a sequence $\{\lambda_k\}$ of positive coefficients and a sequence $\{a_k\}$ of (∞, N) -atoms with support contained in intervals $\{I_k\}$ respectively, such that $\|\sum \lambda_k \chi_{I_k}\|_{L^p_\omega} < \infty$, then $\sum_k \lambda_k a_k$ converges unconditionally both in the sense of distributions and in the $H^p_+(\omega)$ -norm to an element $f \in H^p_+(\omega)$ and

$$||f||_{H_+^p(\omega)} \le C_2 \left\| \sum \lambda_k \chi_{I_k} \right\|_{L^p},$$

holds with C_2 not depending on f. Moreover, in case $f \in L^1_{loc}(\mathbb{R})$ then

$$\left| \sum_{k} \lambda_k^r \chi_{I_k}(x) \right| \le C_r f_{+,N}^*(x)^r, \tag{1}$$

holds for every r > 0 with $C_r = c^r \frac{2^r}{2^r - 1}$ where c is an absolute constant.

For 0 , this result is essentially proved in [3], and it can be generalizedto the case p > 1 following the ideas of Theorem 1 of Chapter VII in [6].

Trough this paper the letters c and C will mean positive finite constants not necessarily the same at each occurrence.

Statement of the main results 2

We shall denote by Ω the strip in the complex plane $\{z \in \mathbb{C} : 0 \leq \text{Re}(z) \leq 1\}$. For $0 < p_0, p_1 < \infty$ and $z \in \Omega$ we define p(z) as

$$\frac{1}{p(z)} = \frac{1-z}{p_0} + \frac{z}{p_1}.$$

Let ω and ν be weights in A_{∞}^+ such that $\omega(x) > 0$ and $\nu(x) > 0$ for almost $x \in \mathbb{R}$.

Given $0 \le u \le 1$ we define

$$\mu(u) = \frac{u \, p(u)}{p_1},$$

and, using the same notation,

$$\mu(u)(x) = \omega(x)^{1-\mu(u)}\nu(x)^{\mu(u)}.$$
(2)

It will be proved in Lemma 4 that $\mu(u) \in A_{\infty}^+$. In the same way, we define q(z) and $\tilde{\mu}(u)$, for $0 < q_0, q_1 < \infty$, $\tilde{\omega}$ and $\tilde{\nu}$ weights in A_{∞}^+ .

Let s be a fixed real number, 0 < s < 1, we shall put p = p(s), q = q(s), $\mu = \mu(s), \ \tilde{\mu} = \tilde{\mu}(s).$

With this notation we have:

Theorem 2 Let $T_z: H^{p_0}_+(\omega) + H^{p_1}_+(\nu) \longrightarrow H^{q_0}_+(\tilde{\omega}) + H^{q_1}_+(\tilde{\nu})$ be a family of linear operators for $z \in \Omega$ such that if $f \in H^{p_0}_+(\omega) + H^{p_1}_+(\nu)$ then $T_z f * \phi_t(x)$ is uniformly continuous and bounded for $z \in \Omega$ and (x,t) in any compact subset of $\{(x,t): x \in \mathbb{R}, t > 0\}$ and analytic for z in the interior of Ω . If, in addition, for some constants $k, \beta > 0$,

$$||T_{it}f||_{H^{q_0}_+(\tilde{\omega})} \le ke^{\beta|t|} ||f||_{H^{p_0}_+(\omega)} \text{ and } ||T_{1+it}f||_{H^{q_1}_+(\tilde{\nu})} \le ke^{\beta|t|} ||f||_{H^{p_1}_+(\nu)}$$

then there exists a constant C such that

$$||T_s f||_{H^q_+(\tilde{\mu})} \le C ||f||_{H^p_+(\mu)},$$

for all $f \in H_+^p(\mu)$.

By a standar argument, this theorem is a consequence of the following result:

Theorem 3 Let $\phi \in C_0^{\infty}(\mathbb{R})$ with $supp(\phi) \subset (-\infty, 0]$ and $\int \phi \neq 0$. 1) Let f(z) be a function of the complex variable $z \in \Omega$ which takes values in $H^{p_0}_+(\omega) + H^{p_1}_+(\nu)$, such that $F(x,t,z) = f(z) * \phi_t(x)$ is uniformly continuous and

bounded for $z \in \Omega$ and (x,t) in any compact subset of $\{(x,t) : x \in \mathbb{R}, t > 0\}$ and analytic for z in the interior of Ω . If $f(it) \in H^{p_0}_+(\omega)$, $\sup_t ||f(it)||_{H^{p_0}_+(\omega)} < \infty$, $f(1+it) \in H^{p_1}_+(\nu)$ and $\sup_t ||f(1+it)||_{H^{p_1}_+(\nu)} < \infty$ then $f(s) \in H^p_+(\mu)$ and

$$\|f(s)\|_{H^p_+(\mu)} \leq c \left(\sup_t \|f(it)\|_{H^{p_0}_+(\omega)} \right)^{1-s} \left(\sup_t \|f(1+it)\|_{H^{p_1}_+(\nu)} \right)^s.$$

2) If $f \in H_+^p(\mu)$, there exists a function f(z) such that F(x,t,z) has the properties stated in the first part, f(s) = f and

$$||f(u+it)||_{H_{+}^{p(u)}(\mu(u))}^{p(u)} \le c ||f||_{H_{+}^{p}(\mu)}^{p}$$
(3)

holds for $z = u + it \in \Omega$ and c does not depend on f.

3 Some preliminary results

In the following lemmas we state some results we shall need to prove Theorem 3. They correspond to Lemma 7 and Lemma 8 of Chapter XII of [6].

Lemma 4 Let
$$\omega \in A_p^+$$
, $\nu \in A_q^+$, $0 < \delta < 1$ and $\eta > 0$. If $s = p(1 - \delta) + q\delta$ then

$$\omega(x)^{1-\delta}\nu(x)^{\delta} \in A_s^+,$$

and there exists a constant $C = C(\eta, \delta, \omega, \nu)$ such that

$$\left(\frac{1}{|I^-|}\int_{I^-}\omega(x)dx\right)^{1-\delta}\left(\frac{1}{|I^-|}\int_{I^-}\nu(x)dx\right)^{\delta}\leq C\left(\frac{1}{|I^+|}\int_{I^+}\omega(x)^{1-\delta}\nu(x)^{\delta}dx\right),$$

holds for every pair of intervals $I^- = (a, b)$ and $I^+ = (b, c)$ with $b - a = \eta (c - b)$.

Proof. Assume $p>1,\ q>1$. By applying Hölder's inequality with exponents $\alpha=\frac{s-1}{(p-1)(1-\delta)}$ and $\beta=\frac{s-1}{(q-1)\delta}$, it is easy to see that $\omega(x)^{1-\delta}\nu(x)^{\delta}\in A_s^+$ with constant $C_{\omega,p}^{1-\delta}C_{\nu,q}^{\delta}$.

Let us prove the rest of the lemma. Since $\omega \in A_p^+$, $\nu \in A_q^+$ and by Hölder's inequality with exponents α and β , we have

$$\left(\int_{I^{-}} \omega(x) dx\right)^{1-\delta} \left(\int_{I^{-}} \nu(x) dx\right)^{\delta} \\
\leq C_{\omega,p}^{1-\delta} C_{\nu,q}^{\delta} \left(c-a\right)^{s} \left[\left(\int_{I^{+}} \omega(x)^{-\frac{1}{p-1}} dx\right)^{(p-1)(1-\delta)} \left(\int_{I^{+}} \nu(x)^{-\frac{1}{q-1}} dx\right)^{(q-1)\delta}\right]^{-1} \\
\leq C_{\omega,p}^{1-\delta} C_{\nu,q}^{\delta} \left(c-a\right)^{s} \left(\int_{I^{+}} \left(\omega(x)^{1-\delta} \nu(x)^{\delta}\right)^{-\frac{1}{s-1}} dx\right)^{(s-1)(-1)} \\
\leq C_{\omega,p}^{1-\delta} C_{\nu,q}^{\delta} \left(\frac{c-a}{|I^{+}|}\right)^{s} \int_{I^{+}} \omega(x)^{1-\delta} \nu(x)^{\delta} dx.$$

If $b - a = \eta (c - b)$ then

$$\left(\frac{1}{|I^-|}\int_{I^-}\omega(x)dx\right)^{1-\delta}\left(\frac{1}{|I^-|}\int_{I^-}\nu(x)dx\right)^{\delta}\leq C\frac{1}{|I^+|}\int_{I^+}\omega(x)^{1-\delta}\nu(x)^{\delta}dx,$$

where $C = C_{\omega,p}^{1-\delta} C_{\nu,q}^{\delta} \frac{(1+\eta)^s}{\eta}$.

Lemma 5 Given $0 , <math>\eta > 0$ there exists a constant $C = C(p, \eta)$ such that if δ is a weight on the real line then

$$\left\| \sum \lambda_k \chi_{I_k} \right\|_{L^p_{\delta}} \le C \left\| \sum \lambda_k \chi_{E_k} \right\|_{L^p_{\delta}}$$

holds for every $\lambda_k > 0$ and for all intervals I_k and all δ -measurable E_k , $E_k \subset I_k$ with $\delta(E_k) \geq \eta \delta(I_k)$.

Proof. The main ideas of the proof can be found in page 116 of [6]. For the sake of completeness we give a proof here.

For the case $1 \leq p < \infty$, let $g \in L^{p'}_{\delta}$, where pp' = p + p'. We assume $g \geq 0$ and $\|g\|_{L^{p'}_{\delta}} = 1$. Since $M_{\delta}(g)(y) = \sup_{I: y \in I} \frac{1}{\delta(I)} \int_{I} g(t) \, \delta(t) \, dt$ then we have,

$$\int \chi_{I_k}(y)g(y)\delta(y)dy \le \delta(I_k) \inf_{y \in E_k} M_{\delta}(g)(y)$$

$$\le \eta^{-1}\delta(E_k) \inf_{y \in E_k} M_{\delta}(g)(y) \le \eta^{-1} \int \chi_{E_k}(y)M_{\delta}(g)(y)\delta(y)dy.$$

Thus,

$$\int \left(\sum \lambda_k \chi_{I_k}(y)\right) g(y) \delta(y) dy \leq \eta^{-1} \int \left(\sum \lambda_k \chi_{E_k}(y)\right) M_{\delta}(g)(y) \delta(y) dy$$
$$\leq \eta^{-1} \left\|\sum \lambda_k \chi_{E_k}\right\|_{L_{\delta}^p} \left\|M_{\delta}(g)\right\|_{L_{\delta}^{p'}}.$$

Now, since we are working on the real line, we have that $\|M_{\delta}(g)\|_{L^{p'}_{\delta}} \leq C_p \|g\|_{L^{p'}_{\delta}}$ holds for every weight δ , with $(C_p)^{p'} = 2^{p'+1}p$ and therefore

$$\int \left(\sum \lambda_k \chi_{I_k}(y)\right) g(y)\delta(y)dy \le C_p \eta^{-1} \left\|\sum \lambda_k \chi_{E_k}\right\|_{L_s^p}.$$

From this inequality we obtain $p \ge 1$.

Now, let us prove the case $0 . By denoting <math>\Psi = \sum \lambda_k \chi_{E_k}$ and $\Phi = \sum \lambda_k \chi_{I_k}$ and, for a fixed t > 0, we define

$$\mathcal{E} = \left\{ x \in \mathbb{R} : \Psi(x) > t \right\} \quad \text{and} \quad \mathcal{O} = \left\{ x \in \mathbb{R} : M_{\delta} \chi_{\mathcal{E}}(x) > \frac{\eta}{2} \right\}.$$

Since we are working on the real line, M_{δ} is weak type (1,1) with constant 2 with respect to the weight δ . So, we have

$$\delta\left(\mathcal{O}\right) \le \frac{4}{\eta}\delta\left(\mathcal{E}\right). \tag{4}$$

If $\mathcal{O}^c \cap I_k \neq \emptyset$ then $\delta(\mathcal{E} \cap E_k) \leq \delta(\mathcal{E} \cap I_k) \leq \frac{\eta}{2} \delta(I_k) \leq \frac{1}{2} \delta(E_k)$ and consequently,

$$\delta(E_k) \le \frac{1}{2}\delta(E_k) + \delta(\mathcal{E}^c \cap E_k).$$

Therefore

$$\eta \delta(\mathcal{E}^c \cap I_k) \le \delta(E_k) \le 2\delta(\mathcal{E}^c \cap E_k) \quad \text{if } \mathcal{O}^c \cap I_k \ne \varnothing.$$
 (5)

Taking r > 1 and using that $\mathcal{O}^c \subseteq \mathcal{E}^c$,

$$\int_{\mathcal{O}^{c}} \Phi(x)^{r} \delta(x) dx \leq \int_{\mathcal{E}^{c}} \left(\sum_{\mathcal{O}^{c} \cap I_{k} \neq \varnothing} \lambda_{k} \chi_{I_{k}}(x) \right)^{r} \delta(x) dx.$$

Since (5) holds, we can apply, with the weight $\delta(x)\chi_{\mathcal{E}^c}(x)$, the case r > 1 we have just proved, to estimate the last term by

$$C_r \eta^{-1} \int_{\mathcal{E}^c} \left(\sum_{\mathcal{O}^c \cap I_k \neq \varnothing} \lambda_k \chi_{E_k}(x) \right)^r \delta(x) dx.$$

So, we have

$$\int_{\mathcal{O}^c} \Phi(x)^r \,\delta(x) \,dx \le C_r \eta^{-1} \int_{\mathcal{E}^c} \Psi(x)^r \,\delta(x) \,dx. \tag{6}$$

From $\delta\left(\left\{x:\Phi\left(x\right)>t\right\}\right)\leq\delta\left(\mathcal{O}\right)+\delta\left(\mathcal{O}^{c}\cap\left\{x:\Phi\left(x\right)>t\right\}\right)$ and by (4) we have

$$\delta\left(\left\{x:\Phi\left(x\right)>t\right\}\right) \leq \frac{4}{\eta}\delta\left(\mathcal{E}\right) + \frac{1}{t^{r}}\int_{\mathcal{O}^{c}}\Phi\left(x\right)^{r}\delta\left(x\right)dx.$$

By (6) we obtain

$$\delta\left(\left\{x:\Phi\left(x\right)>t\right\}\right) \leq \frac{4}{\eta}\delta\left(\mathcal{E}\right) + \frac{C_r}{\eta t^r} \int_{\mathcal{E}^c} \Psi\left(x\right)^r \delta\left(x\right) dx.$$

From the estimation above, we get

$$\left\| \sum_{L_{\delta}^{p}} \lambda_{k} \chi_{I_{k}} \right\|_{L_{\delta}^{p}}^{p} = \int_{0}^{+\infty} p t^{p-1} \delta\left(\left\{x : \Phi\left(x\right) > t\right\}\right) dt$$

$$\leq \frac{4}{\eta} \int_{0}^{+\infty} p t^{p-1} \delta\left(\mathcal{E}\right) dt + \frac{C_{r}}{\eta} \int_{0}^{+\infty} p t^{p-1-r} \int_{\mathcal{E}^{c}} \Psi\left(x\right)^{r} \delta\left(x\right) dx dt.$$

So, the lemma follows since for 0 the last term equals

$$\left(\frac{4}{\eta} + \frac{C_r}{\eta} \frac{p}{r-p}\right) \left\| \sum \lambda_k \chi_{E_k} \right\|_{L_{\delta}^p}^p.$$

The next lemma is contained in Theorem 1 of [2].

Lemma 6 Let $\delta \in A_{\infty}^+$.

1) There exists $\beta > 0$ such that the following implication holds: given $\lambda > 0$ and an interval (a,b) such that $\lambda \leq \frac{\delta(a,x)}{x-a}$ for all $x \in (a,b)$, then:

$$|\{x \in (a,b) : \delta(x) > \beta\lambda\}| > \frac{1}{2}(b-a).$$

2) There exists $\gamma > 0$ such that the following implication holds: given $\lambda > 0$ and an interval (a,b) such that $\lambda \geq \frac{\delta(x,b)}{b-x}$ for all $x \in (a,b)$, then:

$$\delta(\{x \in (a,b) : \delta(x) < \gamma\lambda\}) > \frac{1}{2}\delta(a,b).$$

4 An appropriate atomic decomposition

In this section we give an atomic decomposition of a distribution $f \in H^p_+(\omega)$ with additional properties that we shall need.

We shall say that an interval J 'follows' the interval I if I=[c,d] and J=[d,e].

Our goal is to prove that given $f \in H^p_+(\omega)$ there is an atomic decomposition as stated in Theorem 1 such that for every atom a_k supported in an interval I_k there is another atom a_j supported in an interval I_j following I_k .

First we shall need a couple of lemmas in order to 'break up' an atom.

Lemma 7 Let r > 0. There exists a sequence $\{\eta_j\}_{j=-\infty}^{+\infty}$ of C_0^{∞} functions such that

- 1) $0 \le \eta_j \le 1$ and $\sum_i \eta_j(x) = \chi_{(-\infty,r)}(x)$.
- 2) $supp(\eta_j) \subset I_j = [r 2^{-j}r, r 2^{-j-2}r]$.
- 3) If we denote $r_j = \frac{r}{2^j}$ and $x \in I_j$ then $\frac{1}{4}r_j \le r x \le r_j$.
- 4) Each x belongs to at most three intervals I_j .
- 5) For every non negative integer i there exists a positive constant c_i such that $|D^i\eta_j(x)| \leq c_i r_j^{-i}$.

Proof. Let

$$h(y) = \int_{y}^{y/2} \rho(t)dt,$$

where ρ is a non negative $C_0^{\infty}(\mathbb{R})$ function with support contained in [-2, -1] and $\int \rho(t)dt = 1$. We define

$$\eta_j(x) = h\left(\frac{x-r}{2^{-j-2}r}\right).$$

It is not hard to see that $\{\eta_j\}$ satisfy the five conditions. For details see [3].

Lemma 8 Let a(y) be an (∞, N) -atom with support contained in an interval I. There exists a sequence $\{a_j(x)\}$ of (∞, N) -atoms with associated intervals $\{I_j\}$ such that $a(x) = c \sum_j a_j(x)$ almost everywhere, with c a positive constant independent of a(x). In addition $I = \bigcup_j I_j$ and no point $x \in I$ belongs to more than three intervals I_j .

Proof. Without lost of generality, we can assume that I = [0, r]. Since a(y) is bounded with compact support,

$$A(x) = \frac{1}{N!} \int_{x}^{\infty} (y - x)^{N} a(y) dy,$$

it is well defined.

The vanishing moments condition of a(x) implies that $\mathrm{supp}(A) \subset [0,r]$. Moreover, it is not hard to see that $D^{N+1}A(x) = (-1)^{N+1}a(x)$ for almost every x.

Let $\{\eta_j\}_{j=-\infty}^{\infty}$ be the functions of Lemma 7 associated to the interval $(-\infty, r)$. Then, by condition 1) of Lemma 7, we have

$$A(x) = \sum_{j=-1}^{\infty} A(x)\eta_j(x). \tag{7}$$

If we denote $A_j(x) = A(x)\eta_j(x)$ and $b_j(x) = (-1)^{N+1}D^{N+1}A_j(x)$, we have that $\operatorname{supp}(b_j) \subset [0,r] \cap [r-2^{-j}r,r-2^{-j-2}r] = I_j$, and, since $\operatorname{supp}(A_j)$ is bounded, it can be shown by integration by parts that $b_j(x)$ has N vanishing moments.

We claim that $||b_j||_{\infty} \leq c$, where c only depends on N. By Leibniz's formula we have

$$D^{N+1}A_j(x) = \sum_{k=0}^{N+1} c_{k,N} D^k A(x) D^{N+1-k} \eta_j(x).$$
 (8)

For $x \in \text{supp}(\eta_j)$ and $k \leq N$, since $||a||_{\infty} \leq 1$, we obtain

$$|D^k A(x)| \le c \int_x^r (t-x)^{N-k} |a(t)| dt \le c (r-x)^{N+1-k}.$$

Thus, from (8) and conditions 5) and 3) of Lemma 7, we get

$$|b_{j}(x)| = |D^{N+1}A_{j}(x)| \le c_{N} \sum_{k=0}^{N+1} (r-x)^{N+1-k} |D^{N+1-k}\eta_{j}(x)|$$

$$\le c_{N} \sum_{k=0}^{N+1} \frac{(r-x)^{N+1-k}}{r_{j}^{N+1-k}} \le c_{N} (N+2) = c.$$
(9)

Furthermore, as a consequence of (7), we have,

$$a(x) = c \sum_{j=-1}^{\infty} a_j(x),$$

a.e x, where $a_j(x) = \frac{b_j(x)}{c}$ with c as in (9) are (∞, N) atoms.

Remark 9 We observe that I_{j+2} follows I_j and that $|I_{j+2}| \le |I_j| \le 4 |I_{j+2}|$.

Taking into account this remark and as a consequence of Theorem 1 and the previous lemma we have the following result:

Theorem 10 Let $\omega \in A_s^+$ and $0 . Then there is a integer <math>N(p,\omega)$ with the following property: given any $f \in H_+^p(\omega)$ and $N \geq N(p,\omega)$, we can find a sequence $\{\lambda_k\}$ of positive coefficients and a sequence $\{a_{k,j}(x)\}$ of (∞, N) -atoms with support contained in intervals $\{I_{k,j}\}$ respectively such that the sum $\sum_{k,j} \lambda_k a_{k,j}$ converges unconditionally to f both in the sense of distributions and in the $H_+^p(\omega)$ -norm. Moreover,

$$||f||_{H^p_+(\omega)} \sim \left\| \sum_{k,j} \lambda_k \chi_{I_{k,j}} \right\|_{L^p_\omega}$$

and, for every j, k, $I_{k,j+2}$ follows $I_{k,j}$, and $|I_{k,j+2}| \le |I_{k,j}| \le 4 |I_{k,j+2}|$.

5 Proof of Theorem 3

The first part of the theorem can be obtained as in the proof of Theorem 3 in Chapter XII of [6] using the maximal function $M_1^+(f,\phi,x)$ defined on [4]. For the second part it is enough to define f(z) and to prove inequality (3). Let $f \in H_+^p(\mu)$ then there exists an atomic decomposition $f = \sum_{k,j} \lambda_k a_{k,j}$ as

Let $f \in H_+^p(\mu)$ then there exists an atomic decomposition $f = \sum_{k,j} \lambda_k a_{k,j}$ as the one given in Theorem 10. With the notation introduced in section 2 and for $z \in \Omega$, we define

$$f(z) = \sum_{k,j} \lambda_{k,j}(z) a_{k,j},$$

where

$$\lambda_{k,j}(z) = \lambda_k^{p/p(z)} \left(\frac{\omega(I_{k,j+2})}{\nu(I_{k,j+2})} \right)^{\frac{(z-s)p}{p_0p_1}}.$$

By Theorem 1 there exists a constant C such that

$$||f(u+it)||_{H^{p(u)}_{+}(\mu(u))} \le C \left\| \sum |\lambda_{k,j}(u+it)| \chi_{I_{k,j}} \right\|_{L^{p(u)}_{\mu(u)}},$$

as long as the second term is finite. Then we shall prove that

$$\left\| \sum |\lambda_{k,j}(u+it)| \chi_{I_{k,j}} \right\|_{L^{p(u)}_{\mu(u)}}^{p(u)} \le C \|f\|_{H^{p}_{+}(\mu)}^{p} < \infty.$$

First we claim that there exist $\beta_{k,j} \in I_{k,j+2}$ and a constant c such that, for every $x \in I_{k,j} \cup I_{k,j+2}$,

$$\frac{\mu(u)(x,\beta_{k,j})}{\beta_{k,j}-x} \le 4c \frac{\mu(u)(I_{k,j+2})}{|I_{k,j+2}|}.$$
(10)

In fact, since M^- is weak type (1,1) with constant 2 with respect to the Lebesgue measure, we have, for every k, j, that

$$\left| \left\{ x \in I_{k,j+2} : M^-(\mu(u)\chi_{I_{k,j} \cup I_{k,j+2}})(x) > 4 \frac{\mu(u)(I_{k,j} \cup I_{k,j+2})}{|I_{k,j+2}|} \right\} \right| \le \frac{|I_{k,j+2}|}{2}.$$

So, there exists $\beta_{k,j} \in I_{k,j+2}$ such that

$$M^{-}(\mu(u)\chi_{I_{k,j}\cup I_{k,j+2}})(\beta_{k,j}) \le 4c\frac{\mu(u)(I_{k,j+2})}{|I_{k,j+2}|},$$

where c is the left doubling constant of $\mu(u)$. This implies (10). We denote by $\alpha_{k,j}$ the left end point of $I_{k,j}$ and

$$E_{k,j} = \left\{ x \in (\alpha_{k,j}, \beta_{k,j}) : \mu(u)(x) < \gamma 4c \frac{\mu(u)(I_{k,j+2})}{|I_{k,j+2}|} \right\},\,$$

where γ is the constant given in part 2 of Lemma 6. By (10) we can apply part 2 of Lemma 6 with $\lambda = 4c \frac{\mu(u)(I_{k,j+2})}{|I_{k,j+2}|}$ to obtain

$$\mu(u)(E_{k,j}) \ge \frac{\mu(u)(\alpha_{k,j}, \beta_{k,j})}{2}.$$
(11)

Since $I_{k,j} \subset (\alpha_{k,j}, \beta_{k,j})$, we have

$$\left\| \sum |\lambda_{k,j}(u+it)| \chi_{I_{k,j}} \right\|_{L^{p(u)}_{\mu(u)}} \le \left\| \sum |\lambda_{k,j}(u+it)| \chi_{(\alpha_{k,j},\beta_{k,j})} \right\|_{L^{p(u)}_{\mu(u)}}.$$

From (11) we can apply Lemma 5, and estemate the last term by

$$C \left\| \sum |\lambda_{k,j}(u+it)| \chi_{E_{k,j}} \right\|_{L^{p(u)}_{\mu(u)}} = C \left\| \sum |\lambda_{k,j}(u+it)| \mu(u) \left(\cdot \right)^{\frac{1}{p(u)}} \chi_{E_{k,j}} \right\|_{L^{p(u)}}.$$

By the definition of $\lambda_{k,j}(u+it)$, taking into account that if $x \in E_{k,j}$ then

$$\mu(u)(x) < \gamma 4c \frac{\mu(u)(I_{k,j+2})}{|I_{k,j+2}|}$$

and from (2), the last term is bounded by

$$C \left\| \sum \lambda_k^{\frac{p}{p(u)}} \left[\frac{\omega(I_{k,j+2})}{\nu(I_{k,j+2})} \right]^{\frac{(u-s)p}{p_0p_1}} \left[\frac{1}{|I_{k,j+2}|} \int\limits_{I_{k,j+2}} \omega(x)^{1-\mu(u)} \nu(x)^{\mu(u)} dx \right]^{\frac{1}{p(u)}} \chi_{E_{k,j}} \right\|_{L^{p(u)}}.$$

Since $\frac{(u-s)p}{p_0p_1}=\frac{\mu(u)-\mu}{p(u)}$ and using Hölder's inequality the last expression is bounded by

$$C \left\| \sum \lambda_{k}^{\frac{p}{p(u)}} \left(\frac{\omega(I_{k,j+2})}{\nu(I_{k,j+2})} \right)^{\frac{\mu(u)-\mu}{p(u)}} \left[\frac{\omega(I_{k,j+2})^{1-\mu(u)}\nu(I_{k,j+2})^{\mu(u)}}{|I_{k,j+2}|} \right]^{\frac{1}{p(u)}} \chi_{E_{k,j}} \right\|_{L^{p(u)}} \\ \leq C \left\| \sum \lambda_{k}^{\frac{p}{p(u)}} \left(\frac{\omega(I_{k,j+2})^{1-\mu}\nu(I_{k,j+2})^{\mu}}{|I_{k,j+2}|} \right)^{\frac{1}{p(u)}} \chi_{I_{k,j} \cup I_{k,j+2} \cup I_{k,j+4} \cup I_{k,j+6}} \right\|_{L^{p(u)}}.$$

Therefore, by Lemma 4 and Lemma 5, we get

$$||f(u+it)||_{H^{p(u)}_{+}(\mu(u))} \leq C \left\| \sum_{k} \lambda_{k}^{\frac{p}{p(u)}} \left(\frac{\mu(I_{k,j+4})}{|I_{k,j+4}|} \right)^{\frac{1}{p(u)}} \chi_{I_{k,j+6}} \right\|_{L^{p(u)}}$$

$$\leq C \left\| \sum_{k} \lambda_{k}^{\frac{p}{p(u)}} \left(\frac{\mu(I_{k,j+2})}{|I_{k,j+2}|} \right)^{\frac{1}{p(u)}} \chi_{I_{k,j+4}} \right\|_{L^{p(u)}}.$$

Now we shall consider $M_{\mu}^{+}g\left(x\right)=\sup_{h>0}\frac{1}{\mu\left(x,x+h\right)}\int_{x}^{x+h}g\left(t\right)\mu\left(t\right)dt$. Since M_{μ}^{+} is weak (1,1) with constant 2 with respect to the weight μ we have

$$\mu\left(\left\{x\in I_{k,j+2}: M_{\mu}^{+}(\mu^{-1}\chi_{I_{k,j+2}\cup I_{k,j+4}})(x)>4\frac{|I_{k,j+2}\cup I_{k,j+4}|}{\mu(I_{k,j+2})}\right\}\right)\leq \frac{\mu\left(I_{k,j+2}\right)}{2},$$

so we can choose $c_{k,j} \in I_{k,j+2}$ such that

$$M_{\mu}^{+}(\mu^{-1}\chi_{I_{k,j+2}\cup I_{k,j+4}})(c_{k,j}) \le 8\frac{|I_{k,j+2}|}{\mu(I_{k,j+2})}.$$
(12)

Since, for every $x \in I_{k,j+2} \cup I_{k,j+4}$, $x > c_{k,j}$, $\frac{x - c_{k,j}}{\mu(c_{k,j},x)} \le M_{\mu}^+(\mu^{-1}\chi_{I_{k,j+2} \cup I_{k,j+4}})(c_{k,j})$, we have from (12) that

$$\frac{\mu(I_{k,j+2})}{8|I_{k,j+2}|} \le \frac{\mu(c_{k,j},x)}{x - c_{k,j}}.$$

Then if we denote by $d_{k,j}$ the right end point of $I_{k,j+4}$ and

$$F_{k,j} = \left\{ x \in (c_{k,j}, d_{k,j}) : \mu(x) > \frac{\beta \ \mu(I_{k,j+2})}{4|I_{k,j+2}|} \right\},\,$$

we can apply part 1 of Lemma 6 to obtain

$$|F_{k,j}| \ge \frac{(d_{k,j} - c_{k,j})}{2}.$$

So, by Lemma 5 and definition of $F_{k,i}$,

$$\begin{split} \left\| \sum \lambda_{k}^{\frac{p}{p(u)}} \left(\frac{\mu(I_{k,j+2})}{|I_{k,j+2}|} \right)^{\frac{1}{p(u)}} \chi_{I_{k,j+4}} \right\|_{L^{p(u)}} &\leq C \left\| \sum \lambda_{k}^{\frac{p}{p(u)}} \left(\frac{\mu(I_{k,j+2})}{|I_{k,j+2}|} \right)^{\frac{1}{p(u)}} \chi_{F_{k,j}} \right\|_{L^{p(u)}} \\ &\leq C \left\| \sum \lambda_{k}^{\frac{p}{p(u)}} \mu\left(\cdot \right)^{\frac{1}{p(u)}} \chi_{F_{k,j}} \right\|_{L^{p(u)}} &\leq C \left\| \sum \lambda_{k}^{\frac{p}{p(u)}} \chi_{I_{k,j+4}} \right\|_{L^{p(u)}}. \end{split}$$

Therefore,

$$||f(u+it)||_{H^{p(u)}_{+}(\mu(u))} \le C \left\| \sum_{k} \lambda_{k}^{\frac{p}{p(u)}} \chi_{I_{k,j}} \right\|_{L^{p(u)}_{\mu}}.$$

By a density argument such as the one given in page 187 of [6], we can assume that $f \in L^1_{loc}(\mathbb{R})$. Thus, using (1) in the last inequality, we have

$$\|f(u+it)\|_{H^{p(u)}_{+}(\mu(u))}^{p(u)} \le C \left\|f_{N}^{*\frac{p}{p(u)}}\right\|_{L^{p(u)}_{u}}^{p(u)} = C \|f\|_{H^{p}_{+}(\mu)}^{p},$$

as we wanted to prove.

References

- [1] S. Chanillo, Weighted norm inequalities for strongly singular convolution operators, Trans. Amer. Soc., 282 (1), 1984, 77-107.
- [2] F. J. Martín-Reyes, L. Pick, A. de la Torre, A_{∞}^{+} condition, Can. J. Math., **45** (6), 1993, 1231-1244.
- [3] L. de Rosa, C. Segovia, Weighted H^p spaces for one sided maximal functions, Contemporary Math., 189, 1995.
- [4] L. de Rosa, C. Segovia, Equivalence of norms in one-sided H^p spaces, Collet. Math., 53 (1), (2002), 1-20.
- [5] E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297, 1986, 53-61.
- [6] J.-O. Strömberg, A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer-Verlag, 1989.

Sheldy Ombrosi Departamento de Matemática Universidad Nacional del Sur (8000) Bahía Blanca, Buenos Aires, Argentina e-mail: sombrosi@uns.edu.ar

Carlos Segovia

Instituto Argentino de Matemática, CONICET (1083) Ciudad de Buenos Aires, Argentina e-mail: segovia@iamba.edu.ar

Ricardo Testoni Departamento de Matemática Universidad de Buenos Aires (1425) Ciudad de Buenos Aires, Argentina e-mail: rtest@dm.uba.ar