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Abstract

In this paper we generalize an interpolation result due to J.-O. Strömberg
and A. Torchinsky ([6]) to the case of one-sided Hardy spaces. This gen-
eralization is important in the study of the weak type (1,1) for lateral
strongly singular operators ([1]). We shall need an atomic decomposition
in which for every atom there exists another supported contiguously at its
right. In order to obtain this decomposition we have developed a rather
simple technique to break up an atom into a sum of others atoms.

1 Definitions and prerequisites

Let f(x) be a Lebesgue measurable function defined on R. The one-sided Hardy-
Littlewood maximal functions M+f(x) and M−f(x) are defined as

M+f(x) = sup
h>0

1
h

∫ x+h

x

|f(t)| dt and M−f(x) = sup
h>0

1
h

∫ x

x−h
|f(t)| dt.

As usual, a weight ω is a measurable and non-negative function. If E ⊂ R
is a Lebesgue measurable set, we denote its ω-measure by ω(E) =

∫
E
ω(t)dt. A

function f(x) belongs to Lsω, 0 < s < ∞, if ‖f‖Ls
ω

=
(∫∞

−∞ |f(x)|s ω(x)dx
)1/s

is finite.
A weight ω belongs to the class A+

s , 1 < s <∞, defined by E. Sawyer in [5],
if there exists a constant Cω,s such that if −∞ < a < b < c <∞ then(∫ b

a

ω(t)dt

)(∫ c

b

ω(t)−
1

s−1 dt

)s−1

≤ Cω,s (c− a)s ,

In the limit case of s = 1 we say that ω belongs to the class A+
1 if, and only if,

M−ω(x) ≤ Cω,1ω(x) a.e. We also consider the class A+
∞ =

⋃
s≥1

A+
s .

In general a weight belonging to the A+
∞ can be equal to zero in a set with

positive measure. For simplicity in this paper we shall assume all weights being
positive almost everywhere.

As usual, C∞0 (R) denotes the set of all functions with compact support
having derivatives of all orders. We denote by D the space of all functions in
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C∞0 (R) equipped with the usual topology and by D′ the space of distributions
on R.

Given a positive integer γ and x ∈ R, we shall say a function ψ in C∞0 (R),
belongs to the class Φγ(x) if there exists a bounded interval Iψ = [x, b] containing
the support of ψ such that Dγψ satisfies

|Iψ|γ+1 ‖Dγψ‖∞ ≤ 1.

For f ∈ D′ we consider the one-sided maximal function

f∗+,γ(x) = sup {|〈f, ψ〉| : ψ ∈ Φγ(x)} .

Let ω ∈ A+
s , 0 < p <∞ and γ a positive integer such that p (γ + 1) > s. We

say that a distribution f in D′ belongs to Hp
+(ω) if the “p-norm” ‖f‖Hp

+(ω) =(∫∞
−∞ f∗+,γ(x)

pω(x)dx
)1/p

is finite. These spaces have been defined by L. de
Rosa and C. Segovia in [3]. They also prove in [4] that definition does not
depend on γ.

Let N be an integer. A function a(x) defined on R is called a (∞, N)-atom
if there exists an interval I containing the support of a(x), such that

(i) ‖a‖∞ ≤ 1.

(ii) The identity
∫
I
a(y)ykdy = 0 holds for every integer k, 0 ≤ k ≤ N.

The following theorem gives an atomic decomposition of the Hp
+(ω) spaces:

Theorem 1 Let ω ∈ A+
s and 0 < p < ∞ . Then there is an integer N (p, ω)

with the following property: given any f ∈ Hp
+(ω) and N ≥ N (p, ω) , we can

find a sequence {λk} of positive coefficients and a sequence {ak} of (∞, N)-
atoms with support contained in intervals {Ik} respectively, such that the sum∑
k λkak converges unconditionally to f both in the sense of distributions and

in the Hp
+(ω)-norm. Moreover

C1

∥∥∥∑λkχIk

∥∥∥
Lp

ω

≤ ‖f‖Hp
+(ω) ,

holds with C1 > 0 not depending on f.
Conversely, if we have a sequence {λk} of positive coefficients and a sequence
{ak} of (∞, N)-atoms with support contained in intervals {Ik} respectively, such
that ‖

∑
λkχIk

‖Lp
ω
< ∞, then

∑
k λkak converges unconditionally both in the

sense of distributions and in the Hp
+(ω)-norm to an element f ∈ Hp

+(ω) and

‖f‖Hp
+(ω) ≤ C2

∥∥∥∑λkχIk

∥∥∥
Lp

ω

,

holds with C2 not depending on f.
Moreover, in case f ∈ L1

loc(R) then∣∣∣∑λrkχIk
(x)
∣∣∣ ≤ Crf

∗
+,N (x)r, (1)

holds for every r > 0 with Cr = cr 2r

2r−1 where c is an absolute constant.
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For 0 < p ≤ 1, this result is essentially proved in [3], and it can be generalized
to the case p > 1 following the ideas of Theorem 1 of Chapter VII in [6].

Trough this paper the letters c and C will mean positive finite constants not
necessarily the same at each occurrence.

2 Statement of the main results

We shall denote by Ω the strip in the complex plane {z ∈ C : 0 ≤ Re(z) ≤ 1}.
For 0 < p0, p1 <∞ and z ∈ Ω we define p(z) as

1
p(z)

=
1− z

p0
+

z

p1
.

Let ω and ν be weights in A+
∞ such that ω(x) > 0 and ν(x) > 0 for almost

x ∈ R.
Given 0 ≤ u ≤ 1 we define

µ(u) =
u p(u)
p1

,

and, using the same notation,

µ(u)(x) = ω(x)1−µ(u)ν(x)µ(u). (2)

It will be proved in Lemma 4 that µ(u) ∈ A+
∞.

In the same way, we define q(z) and µ̃(u), for 0 < q0, q1 < ∞ , ω̃ and ν̃
weights in A+

∞.
Let s be a fixed real number, 0 < s < 1, we shall put p = p(s), q = q(s),

µ = µ(s), µ̃ = µ̃(s).
With this notation we have:

Theorem 2 Let Tz : Hp0
+ (ω) + Hp1

+ (ν) −→ Hq0
+ (ω̃) + Hq1

+ (ν̃) be a family of
linear operators for z ∈ Ω such that if f ∈ Hp0

+ (ω) +Hp1
+ (ν) then Tzf ∗ φt(x) is

uniformly continuous and bounded for z ∈ Ω and (x, t) in any compact subset
of {(x, t) : x ∈ R, t > 0} and analytic for z in the interior of Ω.
If, in addition, for some constants k, β > 0,

‖Titf‖Hq0
+ (ω̃) ≤ keβ|t| ‖f‖Hp0

+ (ω) and ‖T1+itf‖Hq1
+ (ν̃) ≤ keβ|t| ‖f‖Hp1

+ (ν)

then there exists a constant C such that

‖Tsf‖Hq
+(µ̃) ≤ C ‖f‖Hp

+(µ) ,

for all f ∈ Hp
+(µ).

By a standar argument, this theorem is a consequence of the following result:
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Theorem 3 Let φ ∈ C∞0 (R) with supp(φ) ⊂ (−∞, 0] and
∫
φ 6= 0.

1) Let f(z) be a function of the complex variable z ∈ Ω which takes values in
Hp0

+ (ω)+Hp1
+ (ν), such that F (x, t, z) = f(z)∗φt(x) is uniformly continuous and

bounded for z ∈ Ω and (x, t) in any compact subset of {(x, t) : x ∈ R, t > 0} and
analytic for z in the interior of Ω. If f(it) ∈ Hp0

+ (ω), supt‖f(it)‖Hp0
+ (ω) < ∞,

f(1 + it) ∈ Hp1
+ (ν) and supt‖f(1 + it)‖Hp1

+ (ν) <∞ then f(s) ∈ Hp
+(µ) and

‖f(s)‖Hp
+(µ) ≤ c

(
supt ‖f(it)‖Hp0

+ (ω)

)1−s (
supt ‖f(1 + it)‖Hp1

+ (ν)

)s
.

2) If f ∈ Hp
+(µ), there exists a function f(z) such that F (x, t, z) has the prop-

erties stated in the first part, f(s) = f and

‖f(u+ it)‖p(u)

H
p(u)
+ (µ(u))

≤ c ‖f‖pHp
+(µ) (3)

holds for z = u+ it ∈ Ω and c does not depend on f .

3 Some preliminary results

In the following lemmas we state some results we shall need to prove Theorem
3. They correspond to Lemma 7 and Lemma 8 of Chapter XII of [6].

Lemma 4 Let ω ∈ A+
p , ν ∈ A+

q , 0 < δ < 1 and η > 0.
If s = p(1− δ) + qδ then

ω(x)1−δν(x)δ ∈ A+
s ,

and there exists a constant C = C(η, δ, ω, ν) such that(
1
|I−|

∫
I−
ω(x)dx

)1−δ ( 1
|I−|

∫
I−
ν(x)dx

)δ
≤ C

(
1
|I+|

∫
I+
ω(x)1−δν(x)δdx

)
,

holds for every pair of intervals I− = (a, b) and I+ = (b, c) with b−a = η (c− b).

Proof. Assume p > 1, q > 1. By applying Hölder’s inequality with expo-
nents α = s−1

(p−1)(1−δ) and β = s−1
(q−1)δ , it is easy to see that ω(x)1−δν(x)δ ∈ A+

s

with constant C1−δ
ω,p C

δ
ν,q.

Let us prove the rest of the lemma. Since ω ∈ A+
p , ν ∈ A+

q and by Hölder’s
inequality with exponents α and β, we have(∫

I−
ω(x)dx

)1−δ (∫
I−
ν(x)dx

)δ
≤ C1−δ

ω,p C
δ
ν,q (c− a)s

[(∫
I+
ω(x)−

1
p−1 dx

)(p−1)(1−δ)(∫
I+
ν(x)−

1
q−1 dx

)(q−1)δ
]−1

≤ C1−δ
ω,p C

δ
ν,q (c− a)s

(∫
I+

(
ω(x)1−δν(x)δ

)− 1
s−1 dx

)(s−1)(−1)

≤ C1−δ
ω,p C

δ
ν,q

(
c− a

|I+|

)s ∫
I+
ω(x)1−δν(x)δdx.
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If b− a = η (c− b) then(
1
|I−|

∫
I−
ω(x)dx

)1−δ ( 1
|I−|

∫
I−
ν(x)dx

)δ
≤ C

1
|I+|

∫
I+
ω(x)1−δν(x)δdx,

where C = C1−δ
ω,p C

δ
ν,q

(1+η)s

η .

Lemma 5 Given 0 < p < ∞, η > 0 there exists a constant C = C(p, η) such
that if δ is a weight on the real line then∥∥∥∑λkχIk

∥∥∥
Lp

δ

≤ C
∥∥∥∑λkχEk

∥∥∥
Lp

δ

holds for every λk > 0 and for all intervals Ik and all δ−measurable Ek, Ek ⊂ Ik
with δ(Ek) ≥ ηδ(Ik).

Proof. The main ideas of the proof can be found in page 116 of [6]. For the
sake of completeness we give a proof here.

For the case 1 ≤ p < ∞, let g ∈ Lp
′

δ , where pp′ = p + p′. We assume g ≥ 0
and ‖g‖

Lp′
δ

= 1. Since Mδ(g)(y) = supI: y∈I
1
δ(I)

∫
I
g (t) δ (t) dt then we have,∫

χIk
(y)g(y)δ(y)dy ≤ δ(Ik) inf

y∈Ek

Mδ(g)(y)

≤ η−1δ(Ek) inf
y∈Ek

Mδ(g)(y) ≤ η−1

∫
χEk

(y)Mδ(g)(y)δ(y)dy.

Thus,∫ (∑
λkχIk

(y)
)
g(y)δ(y)dy ≤ η−1

∫ (∑
λkχEk

(y)
)
Mδ(g)(y)δ(y)dy

≤ η−1
∥∥∥∑λkχEk

∥∥∥
Lp

δ

‖Mδ(g)‖Lp′
δ

.

Now, since we are working on the real line, we have that ‖Mδ(g)‖Lp′
δ

≤
Cp ‖g‖Lp′

δ

holds for every weight δ, with (Cp)p
′
= 2p

′+1p and therefore∫ (∑
λkχIk

(y)
)
g(y)δ(y)dy ≤ Cpη

−1
∥∥∥∑λkχEk

∥∥∥
Lp

δ

.

From this inequality we obtain immediately the conclusion for p ≥ 1.
Now, let us prove the case 0 < p < 1. By denoting Ψ =

∑
λkχEk

and
Φ =

∑
λkχIk

and, for a fixed t > 0, we define

E = {x ∈ R : Ψ (x) > t} and O =
{
x ∈ R : MδχE (x) >

η

2

}
.

Since we are working on the real line, Mδ is weak type (1, 1) with constant
2 with respect to the weight δ. So, we have

δ (O) ≤ 4
η
δ (E) . (4)
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If Oc ∩ Ik 6= ∅ then δ(E ∩ Ek) ≤ δ(E ∩ Ik) ≤ η
2 δ (Ik) ≤ 1

2δ (Ek) and conse-
quently,

δ (Ek) ≤
1
2
δ (Ek) + δ(Ec ∩ Ek).

Therefore

ηδ(Ec ∩ Ik) ≤ δ (Ek) ≤ 2δ(Ec ∩ Ek) if Oc ∩ Ik 6= ∅. (5)

Taking r > 1 and using that Oc ⊆ Ec,

∫
Oc

Φ (x)r δ (x) dx ≤
∫
Ec

 ∑
Oc∩Ik 6=∅

λkχIk
(x)

r

δ (x) dx.

Since (5) holds, we can apply, with the weight δ(x)χEc(x), the case r > 1 we
have just proved, to estimate the last term by

Crη
−1

∫
Ec

 ∑
Oc∩Ik 6=∅

λkχEk
(x)

r

δ (x) dx.

So, we have ∫
Oc

Φ (x)r δ (x) dx ≤ Crη
−1

∫
Ec

Ψ(x)r δ (x) dx. (6)

From δ ({x : Φ (x) > t}) ≤ δ (O)+δ(Oc∩{x : Φ (x) > t}) and by (4) we have

δ ({x : Φ (x) > t}) ≤ 4
η
δ (E) +

1
tr

∫
Oc

Φ (x)r δ (x) dx.

By (6) we obtain

δ ({x : Φ (x) > t}) ≤ 4
η
δ (E) +

Cr
ηtr

∫
Ec

Ψ(x)r δ (x) dx.

From the estimation above, we get∥∥∥∑λkχIk

∥∥∥p
Lp

δ

=
∫ +∞

0

ptp−1δ ({x : Φ (x) > t}) dt

≤ 4
η

∫ +∞

0

ptp−1δ (E) dt+
Cr
η

∫ +∞

0

ptp−1−r
∫
Ec

Ψ(x)r δ (x) dx dt.

So, the lemma follows since for 0 < p < 1 the last term equals(
4
η

+
Cr
η

p

r − p

)∥∥∥∑λkχEk

∥∥∥p
Lp

δ

.

The next lemma is contained in Theorem 1 of [2].
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Lemma 6 Let δ ∈ A+
∞.

1) There exists β > 0 such that the following implication holds: given λ > 0 and
an interval (a, b) such that λ ≤ δ(a,x)

x−a for all x ∈ (a, b), then:

|{x ∈ (a, b) : δ(x) > βλ}| > 1
2
(b− a).

2) There exists γ > 0 such that the following implication holds: given λ > 0 and
an interval (a, b) such that λ ≥ δ(x,b)

b−x for all x ∈ (a, b), then:

δ({x ∈ (a, b) : δ(x) < γλ}) > 1
2
δ(a, b).

4 An appropriate atomic decomposition

In this section we give an atomic decomposition of a distribution f ∈ Hp
+(ω)

with additional properties that we shall need.
We shall say that an interval J ‘follows’ the interval I if I = [c, d] and

J = [d, e].
Our goal is to prove that given f ∈ Hp

+(ω) there is an atomic decomposition
as stated in Theorem 1 such that for every atom ak supported in an interval Ik
there is another atom aj supported in an interval Ij following Ik.

First we shall need a couple of lemmas in order to ‘break up’ an atom.

Lemma 7 Let r > 0. There exists a sequence {ηj}+∞
j=−∞ of C∞0 functions such

that

1) 0 ≤ ηj ≤ 1 and
∑
j ηj(x) = χ(−∞,r)(x).

2) supp(ηj) ⊂ Ij =
[
r − 2−jr, r − 2−j−2r

]
.

3) If we denote rj = r
2j and x ∈ Ij then 1

4rj ≤ r − x ≤ rj .

4) Each x belongs to at most three intervals Ij .

5) For every non negative integer i there exists a positive constant ci such
that

∣∣Diηj(x)
∣∣ ≤ cir

−i
j .

Proof. Let

h(y) =
∫ y/2

y

ρ(t)dt,

where ρ is a non negative C∞0 (R) function with support contained in [−2,−1] and∫
ρ(t)dt = 1.We define

ηj(x) = h

(
x− r

2−j−2r

)
.

It is not hard to see that {ηj} satisfy the five conditions. For details see [3].

7



Lemma 8 Let a(y) be an (∞, N)-atom with support contained in an interval
I. There exists a sequence {aj(x)} of (∞, N)-atoms with associated intervals
{Ij} such that a(x) = c

∑
j aj(x) almost everywhere, with c a positive constant

independent of a(x). In addition I = ∪jIj and no point x ∈ I belongs to more
than three intervals Ij.

Proof. Without lost of generality, we can assume that I = [0, r]. Since a(y)
is bounded with compact support,

A(x) =
1
N !

∫ ∞

x

(y − x)N a(y)dy,

it is well defined.
The vanishing moments condition of a(x) implies that supp(A) ⊂ [0, r] .

Moreover, it is not hard to see that DN+1A (x) = (−1)N+1
a(x) for almost

every x.
Let {ηj}∞j=−∞ be the functions of Lemma 7 associated to the interval (−∞, r).

Then, by condition 1) of Lemma 7, we have

A(x) =
∞∑

j=−1

A(x)ηj(x). (7)

If we denote Aj(x) = A(x)ηj(x) and bj(x) = (−1)N+1DN+1Aj(x), we have
that supp(bj) ⊂ [0, r] ∩ [r − 2−jr, r − 2−j−2r] = Ij , and, since supp(Aj) is
bounded, it can be shown by integration by parts that bj(x) has N vanishing
moments.

We claim that ‖bj‖∞ ≤ c, where c only depends on N . By Leibniz’s formula
we have

DN+1Aj(x) =
N+1∑
k=0

ck,ND
kA(x)DN+1−kηj(x). (8)

For x ∈supp(ηj) and k ≤ N, since ‖a‖∞ ≤ 1, we obtain∣∣DkA(x)
∣∣ ≤ c

∫ r

x

(t− x)N−k |a(t)| dt ≤ c (r − x)N+1−k
.

Thus, from (8) and conditions 5) and 3) of Lemma 7, we get

|bj (x)| =
∣∣DN+1Aj(x)

∣∣ ≤ cN

N+1∑
k=0

(r − x)N+1−k ∣∣DN+1−kηj(x)
∣∣ (9)

≤ cN

N+1∑
k=0

(r − x)N+1−k

rN+1−k
j

≤ cN (N + 2) = c.

Furthermore, as a consequence of (7), we have,

a (x) = c
∞∑

j=−1

aj (x) ,
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a.e x, where aj(x) = bj(x)
c with c as in (9) are (∞, N) atoms.

Remark 9 We observe that Ij+2 follows Ij and that |Ij+2| ≤ |Ij | ≤ 4 |Ij+2|.

Taking into account this remark and as a consequence of Theorem 1 and the
previous lemma we have the following result:

Theorem 10 Let ω ∈ A+
s and 0 < p < ∞ . Then there is a integer N (p, ω)

with the following property: given any f ∈ Hp
+(ω) and N ≥ N (p, ω) , we can

find a sequence {λk} of positive coefficients and a sequence {ak,j(x)} of (∞, N)-
atoms with support contained in intervals {Ik,j} respectively such that the sum∑
k,j λkak,j converges unconditionally to f both in the sense of distributions and

in the Hp
+(ω)-norm. Moreover,

‖f‖Hp
+(ω) ∼

∥∥∥∥∥∥
∑
k,j

λkχIk,j

∥∥∥∥∥∥
Lp

ω

and,for every j, k, Ik,j+2 follows Ik,j , and |Ik,j+2| ≤ |Ik,j | ≤ 4 |Ik,j+2| .

5 Proof of Theorem 3

The first part of the theorem can be obtained as in the proof of Theorem 3 in
Chapter XII of [6] using the maximal function M+

1 (f, φ, x) defined on [4]. For
the second part it is enough to define f(z) and to prove inequality (3).
Let f ∈ Hp

+ (µ) then there exists an atomic decomposition f =
∑
k,j λkak,j as

the one given in Theorem 10. With the notation introduced in section 2 and for
z ∈ Ω, we define

f(z) =
∑
k,j

λk,j(z)ak,j ,

where

λk,j(z) = λ
p/p(z)
k

(
ω(Ik,j+2)
ν(Ik,j+2)

) (z−s)p
p0p1

.

By Theorem 1 there exists a constant C such that

‖f(u+ it)‖
H

p(u)
+ (µ(u))

≤ C
∥∥∥∑ |λk,j(u+ it)|χIk,j

∥∥∥
L

p(u)
µ(u)

,

as long as the second term is finite. Then we shall prove that∥∥∥∑ |λk,j(u+ it)|χIk,j

∥∥∥p(u)

L
p(u)
µ(u)

≤ C ‖f‖pHp
+(µ) <∞.

First we claim that there exist βk,j ∈ Ik,j+2 and a constant c such that, for
every x ∈ Ik,j ∪ Ik,j+2,

µ(u) (x, βk,j)
βk,j − x

≤ 4c
µ(u)(Ik,j+2)
|Ik,j+2|

. (10)
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In fact, sinceM− is weak type (1, 1) with constant 2 with respect to the Lebesgue
measure, we have, for every k, j, that∣∣∣∣{x ∈ Ik,j+2 : M−(µ(u)χIk,j∪Ik,j+2)(x) > 4

µ(u)(Ik,j ∪ Ik,j+2)
|Ik,j+2|

}∣∣∣∣ ≤ |Ik,j+2|
2

.

So, there exists βk,j ∈ Ik,j+2 such that

M−(µ(u)χIk,j∪Ik,j+2)(βk,j) ≤ 4c
µ(u)(Ik,j+2)
|Ik,j+2|

,

where c is the left doubling constant of µ(u). This implies (10).
We denote by αk,j the left end point of Ik,j and

Ek,j =
{
x ∈ (αk,j , βk,j) : µ(u)(x) < γ4c

µ(u)(Ik,j+2)
|Ik,j+2|

}
,

where γ is the constant given in part 2 of Lemma 6. By (10) we can apply part
2 of Lemma 6 with λ = 4c µ(u)(Ik,j+2)

|Ik,j+2| to obtain

µ(u)(Ek,j) ≥
µ(u)(αk,j , βk,j)

2
. (11)

Since Ik,j ⊂ (αk,j , βk,j), we have∥∥∥∑ |λk,j(u+ it)|χIk,j

∥∥∥
L

p(u)
µ(u)

≤
∥∥∥∑ |λk,j(u+ it)|χ(αk,j ,βk,j)

∥∥∥
L

p(u)
µ(u)

.

From (11) we can apply Lemma 5, and estemate the last term by

C
∥∥∥∑ |λk,j(u+ it)|χEk,j

∥∥∥
L

p(u)
µ(u)

= C
∥∥∥∑ |λk,j(u+ it)|µ(u) (·)

1
p(u) χEk,j

∥∥∥
Lp(u)

.

By the definition of λk,j(u+ it), taking into account that if x ∈ Ek,j then

µ(u)(x) < γ4c
µ(u)(Ik,j+2)
|Ik,j+2|

and from (2), the last term is bounded by

C

∥∥∥∥∥∥∥∥
∑
λ

p
p(u)

k

[
ω(Ik,j+2)
ν(Ik,j+2)

] (u−s)p
p0p1

 1
|Ik,j+2|

∫
Ik,j+2

ω(x)1−µ(u)ν(x)µ(u)dx


1

p(u)

χEk,j

∥∥∥∥∥∥∥∥
Lp(u)

.
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Since (u−s)p
p0p1

= µ(u)−µ
p(u) and using Hölder’s inequality the last expression is

bounded by

C

∥∥∥∥∥∑λ
p

p(u)

k

(
ω(Ik,j+2)
ν(Ik,j+2)

)µ(u)−µ
p(u)

[
ω(Ik,j+2)1−µ(u)ν(Ik,j+2)µ(u)

|Ik,j+2|

] 1
p(u)

χEk,j

∥∥∥∥∥
Lp(u)

≤ C

∥∥∥∥∥∑λ
p

p(u)

k

(
ω(Ik,j+2)1−µν(Ik,j+2)µ

|Ik,j+2|

) 1
p(u)

χIk,j∪Ik,j+2∪Ik,j+4∪Ik,j+6

∥∥∥∥∥
Lp(u)

.

Therefore, by Lemma 4 and Lemma 5, we get

‖f(u+ it)‖
H

p(u)
+ (µ(u))

≤ C

∥∥∥∥∥∑λ
p

p(u)

k

(
µ(Ik,j+4)
|Ik,j+4|

) 1
p(u)

χIk,j+6

∥∥∥∥∥
Lp(u)

≤ C

∥∥∥∥∥∑λ
p

p(u)

k

(
µ(Ik,j+2)
|Ik,j+2|

) 1
p(u)

χIk,j+4

∥∥∥∥∥
Lp(u)

.

Now we shall consider M+
µ g (x) = suph>0

1
µ(x,x+h)

∫ x+h
x

g (t)µ(t)dt. Since M+
µ

is weak (1, 1) with constant 2 with respect to the weight µ we have

µ

({
x ∈ Ik,j+2 : M+

µ (µ−1χIk,j+2∪Ik,j+4)(x) > 4
|Ik,j+2 ∪ Ik,j+4|

µ(Ik,j+2)

})
≤ µ (Ik,j+2)

2
,

so we can choose ck,j ∈ Ik,j+2 such that

M+
µ (µ−1χIk,j+2∪Ik,j+4)(ck,j) ≤ 8

|Ik,j+2|
µ(Ik,j+2)

. (12)

Since, for every x ∈ Ik,j+2∪Ik,j+4, x > ck,j ,
x−ck,j

µ(ck,j ,x)
≤M+

µ (µ−1χIk,j+2∪Ik,j+4)(ck,j),
we have from (12) that

µ(Ik,j+2)
8 |Ik,j+2|

≤ µ(ck,j , x)
x− ck,j

.

Then if we denote by dk,j the right end point of Ik,j+4 and

Fk,j =
{
x ∈ (ck,j , dk,j) : µ(x) >

β µ(Ik,j+2)
4|Ik,j+2|

}
,

we can apply part 1 of Lemma 6 to obtain

|Fk,j | ≥
(dk,j − ck,j)

2
.

So, by Lemma 5 and definition of Fk,j ,∥∥∥∥∑λ
p

p(u)

k

(
µ(Ik,j+2)
|Ik,j+2|

) 1
p(u)

χIk,j+4

∥∥∥∥
Lp(u)

≤ C

∥∥∥∥∑λ
p

p(u)

k

(
µ(Ik,j+2)
|Ik,j+2|

) 1
p(u)

χFk,j

∥∥∥∥
Lp(u)

≤ C

∥∥∥∥∑λ
p

p(u)

k µ (·)
1

p(u) χFk,j

∥∥∥∥
Lp(u)

≤ C

∥∥∥∥∑λ
p

p(u)

k χIk,j+4

∥∥∥∥
L

p(u)
µ

.
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Therefore,

‖f(u+ it)‖
H

p(u)
+ (µ(u))

≤ C

∥∥∥∥∑λ
p

p(u)

k χIk,j

∥∥∥∥
L

p(u)
µ

.

By a density argument such as the one given in page 187 of [6], we can assume
that f ∈ L1

loc(R). Thus, using (1) in the last inequality, we have

‖f(u+ it)‖p(u)

H
p(u)
+ (µ(u))

≤ C

∥∥∥∥f∗ p
p(u)

N

∥∥∥∥p(u)

L
p(u)
µ

= C ‖f‖pHp
+(µ) ,

as we wanted to prove.
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