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Abstract
In this paper we generalize an interpolation result due to J.-O. Stromberg

and A. Torchinsky ([6]) to the case of one-sided Hardy spaces. This gen-
eralization is important in the study of the weak type (1,1) for lateral
strongly singular operators ([1]). We shall need an atomic decomposition
in which for every atom there exists another supported contiguously at its
right. In order to obtain this decomposition we have developed a rather
simple technique to break up an atom into a sum of others atoms.

1 Definitions and prerequisites

Let f(z) be a Lebesgue measurable function defined on R. The one-sided Hardy-
Littlewood maximal functions M f(z) and M~ f(x) are defined as

M) =sup [ 170t and M @) =swp [ (5o at
h>oh Jy h>0 b Joon
As usual, a weight w is a measurable and non-negative function. If £ C R
is a Lebesgue measurable set, we denote its w-measure by w(E) = [, w(t)dt. A

IS s 1/s
function f(x) belongs to LS, 0 < s < oo, if |[f]l,. = ( 12| @)] w(x)dx)
is finite.
A weight w belongs to the class AT, 1 < s < oo, defined by E. Sawyer in [5],

if there exists a constant C, s such that if —oo < a < b < ¢ < oo then

</abw(t)dt> (/bcw(t)_slldt>s_l <Coslc—a),

In the limit case of s = 1 we say that w belongs to the class A if, and only if,

M~ w(z) < C,1w(z) a.e. We also consider the class AT = |J Af.
s>1

In general a weight belonging to the AT can be equal to zero in a set with
positive measure. For simplicity in this paper we shall assume all weights being
positive almost everywhere.

As usual, C§°(R) denotes the set of all functions with compact support
having derivatives of all orders. We denote by D the space of all functions in



C§°(R) equipped with the usual topology and by D’ the space of distributions
on R.

Given a positive integer v and = € R, we shall say a function ¢ in C5°(R),
belongs to the class @, (x) if there exists a bounded interval I, = [z, b] containing
the support of ¢ such that D7) satisfies

1
(1Dl < 1
For f € D' we consider the one-sided maximal function

fi A (@) = sup{[(f,9)] : b € Dy (2)} .

Let w € AT, 0 < p < oo and v a positive integer such that p (v + 1) > s. We
say that a distribution f in D’ belongs to HY (w) if the “p-norm” Hf”Hi(w) =

1/p
(ffooo fj‘rﬁ(x)pw(m)dx> is finite. These spaces have been defined by L. de

Rosa and C. Segovia in [3]. They also prove in [4] that definition does not
depend on 7.

Let N be an integer. A function a(z) defined on R is called a (oo, N)-atom
if there exists an interval I containing the support of a(z), such that

(1) llallo = 1.
(ii) The identity [, a(y)y*dy = 0 holds for every integer k, 0 < k < N.

The following theorem gives an atomic decomposition of the H f_ (w) spaces:

Theorem 1 Let w € AT and 0 < p < oo . Then there is an integer N (p,w)
with the following property: given any f € HY (w) and N > N (p,w), we can
find a sequence {\;} of positive coefficients and a sequence {ar} of (00, N)-
atoms with support contained in intervals {Ix} respectively, such that the sum
> ok Akak converges unconditionally to f both in the sense of distributions and
in the HY (w)-norm. Moreover

Ch HZ /\kXIk

holds with C7 > 0 not depending on f.

Conversely, if we have a sequence {\} of positive coefficients and a sequence
{ax} of (00, N)-atoms with support contained in intervals {Iy} respectively, such
that ||>2 Aexr |y < oo, then Y ) Akax converges unconditionally both in the
sense of distributions and in the HY (w)-norm to an element f € HY (w) and

1 in o) < C2 > e,

holds with Cy not depending on f.
Moreover, in case f € L} _(R) then

loc

>N @)] < Cff (e, 1)

holds for every r > 0 with C, = c”%

2o <M llrc

)
p
Lw

where ¢ is an absolute constant.



For 0 < p < 1, this result is essentially proved in [3], and it can be generalized
to the case p > 1 following the ideas of Theorem 1 of Chapter VII in [6].

Trough this paper the letters ¢ and C' will mean positive finite constants not
necessarily the same at each occurrence.

2 Statement of the main results

We shall denote by €2 the strip in the complex plane {z € C: 0 < Re(z) < 1}.
For 0 < pg,p1 < oo and z € Q we define p(z) as

1 1—-2 =z
- = "4 =
p(z)  po P

Let w and v be weights in AZ such that w(z) > 0 and v(z) > 0 for almost
z € R.

Given 0 < u <1 we define

up(u)
u) = ,
pi(u) o
and, using the same notation,
p(w)(z) = w(z) (a0, (2)

It will be proved in Lemma 4 that u(u) € AL.

In the same way, we define ¢(z) and fi(u), for 0 < go,q1 < oo , @ and P
weights in AL .

Let s be a fixed real number, 0 < s < 1, we shall put p = p(s), ¢ = ¢(s),
= /J'(S>7 p= /],(8)

With this notation we have:

Theorem 2 Let T, : HY (w) + HY' (v) — HY (@) + H{ (7) be a family of
linear operators for z € Q) such that if f € HY(w) + HY' (v) then T, f * ¢y (x) is
uniformly continuous and bounded for z € Q and (x,t) in any compact subset

of {(x,t) : x € R, t > 0} and analytic for z in the interior of Q).
If, in addition, for some constants k,3 >0,

T3t f 1l oo (3 < kellt! [l 270 @y and [Trgief | g 5y < kel [Ty
then there exists a constant C' such that
1T Fll ey < C NN
for all f € HY ().

By a standar argument, this theorem is a consequence of the following result:



Theorem 3 Let ¢ € C§° (R) with supp(¢) C (—o00,0] and [ ¢ # 0.

1) Let f(2) be a function of the complex variable z € Q0 which takes values in
HY (w)+HY (v), such that F(x,t,z) = f(z)*d¢(x) is uniformly continuous and
bounded for z € Q and (x,t) in any compact subset of {(z,t) : x € R, t > 0} and
analytic for z in the interior of Q. If f(it) € HE’(w), supt||f(it)|\Hio () < 09,
f(1+it) € HY (v) and sup| f(1+ z't)||Hil () < 00 then f(s) € HY (u) and

1—s s
1 iz < e (supe 1@ pocy) (sume 7O+ il gz s))

2) If f € HY (), there exists a function f(z) such that F(x,t,z) has the prop-
erties stated in the first part, f(s) = f and

1+ )00 ) S €1 e (3)

holds for z =u+ it € Q and ¢ does not depend on f.

3 Some preliminary results

In the following lemmas we state some results we shall need to prove Theorem
3. They correspond to Lemma 7 and Lemma 8 of Chapter XII of [6].

Lemma 4 Letw € A, v e AF,0<d <1 andn>0.
If s=p(1—10)+qd then
w(z)' ()’ € AL,

and there exists a constant C = C(n,d,w,v) such that

<|Il_| - w(:p)dm)lé (|Il—| i z/(:c)dx>6 <C (|11+ /I+ w(x)l‘su(x)‘sdx> ,

holds for every pair of intervals I~ = (a,b) and IT = (b,c) withb—a =n(c —b).

Proof. Assume p > 1, ¢ > 1. By applying Hélder’s inequality with expo-
nents o = m and 8 = ﬁ, it is easy to see that w(z)! v (z)® € AF
with constant C1~ ‘SC"; g

Let us prove the rest of the lemma. Since w € A+, v e AJr and by Holder’s
inequality with exponents « and 3, we have

(/_ w(x)dx> o (/_ z/(:r)dx>6
<clle (c—a) [(/ﬁ W(os)_plldx> e (/1+ I/(:c)_qlld;p> (q1)5‘|

1-6 46 s 1-6 0 N6\~ T (=D
<C,,C), (c—a) (/1 (w(x) v(x)’) 7 da:)

-1




If b—a=mn(c—"b) then

(|11| i w(x)da:)l_é <|Ill A V(m)dx)6 CW [ @ vy,

where C' = C(},;‘SCS’(]%. ]

Lemma 5 Given 0 < p < oo, n > 0 there exists a constant C = C(p,n) such
that if § is a weight on the real line then

1> aw, y <o,

holds for every A\, > 0 and for all intervals I}, and all §—measurable Ey,, Fy C I
with §(Ey) > T](S(Ik).

Proof. The main ideas of the proof can be found in page 116 of [6]. For the
sake of completeness we give a proof here.

For the case 1 < p < o0, let g € Lf;,, where pp’ = p +p’. We assume g > 0
and |\gHL§/ = 1. Since Ms(9)(y) = sup;. yer ﬁ J;9 ()6 (t)dt then we have,

/ X1 g3 (w)dy < 5(1) inf Ms(o)(y)

<o 18(E) inf Ma(o)) < 07" [ () Ms(9) ()50 dy.

Thus,

/(Zka(y)) ()d(y) dy<n—1/(ZAkXEk (v)) Ms(9) ()6 (v)dy
<u [ x|, 14560l

Now, since we are working on the real line, we have that ||Ms(g)

Cp HgHLg/ holds for every weight 8, with (C,,)?" = 2P"+1p and therefore

[ (S hn ) sty < o [ wwxs |,

From this inequality we obtain immediately the conclusion for p > 1.
Now, let us prove the case 0 < p < 1. By denoting ¥ = > A\yxg, and
O =" M\pxg, and, for a fixed ¢ > 0, we define

<
||Li§' —

E={reR:U(z)>t} and O:{xER:M(;Xg(x)>g}.

Since we are working on the real line, M; is weak type (1,1) with constant
2 with respect to the weight 6. So, we have

50) < L5, (@)



If O¢N1I; # & then (5(5 N Ek) < 6(5 n Ik) < %(5 (Ik) <
quently,

0 (E)) and conse-

1
2
1
0 (Ex) < 50 (Br) +0(E°N Ey).
Therefore
no(E°NIL) <6 (Fg) <20(E°NER) fO°NI; £ 2. (5)

Taking r > 1 and using that O° C £¢,

/C<I>(;g)7’5(;p)da:§/c( Z )\kX]k(z)> 0 () dz.

Ocnlp £

Since (5) holds, we can apply, with the weight 6(x)xec(x), the case r > 1 we
have just proved, to estimate the last term by

C’“"_l/gc< S )\kXEk(x)) 5 (z) da.

O°n,£2

So, we have

/ @ (@) 5 (@) dw < O / U (2)" 5 (2) da. (6)

c

From § ({z : ® (z) > t}) <6 (0)+6(0O°N{x: ®(z) > t}) and by (4) we have

4 1 .
S({z:®(z) > 1)) < %5(5)”7/@@(3;) 5 (z) da.

By (6) we obtain

5({x:¢(x)>t})§%5(5)+nc;

/ U (z)" 6 (z) dx.
Ec
From the estimation above, we get
HZ )\k‘XIk
4

+o0 C +oo
< f/ ptpfl(?(é')dt—f——r/ ptpflfr/ U (z)" 6 (z) dxdt.
nJo nJo e

p +oo B
L :/o pt"16 ({z 2 @ (x) > 1)) dt

So, the lemma follows since for 0 < p < 1 the last term equals

(4+Cr P )HZ)\ICXEI«

n onr—p

p
e’
n

The next lemma is contained in Theorem 1 of [2].



Lemma 6 Let § € AL.

1) There exists 3 > 0 such that the following implication holds: given A > 0 and

an interval (a,b) such that A < M’Z) for all z € (a,b), then:

€r—

{2 € (a,b) : (z) > BN} > %(b _a).

2) There exists v > 0 such that the following implication holds: given X\ > 0 and
an interval (a,b) such that X\ > % for all x € (a,b), then:

d{z € (a,b) : 6(x) < yA}) > %5(&, b).

4 An appropriate atomic decomposition

In this section we give an atomic decomposition of a distribution f € HY (w)
with additional properties that we shall need.

We shall say that an interval J ‘follows’ the interval I if I = [c¢,d] and
J=1[d,e].

Our goal is to prove that given f € HY (w) there is an atomic decomposition
as stated in Theorem 1 such that for every atom aj supported in an interval I
there is another atom a; supported in an interval I; following Ij,.

First we shall need a couple of lemmas in order to ‘break up’ an atom.

Lemma 7 Letr > 0. There exists a sequence {nj};rioo of C§° functions such
that

1) 0<m; <Tand 3 n;(x) = X(—o0,m) ()

2) supp(n;) C I; = [r —279r,r —27972] .

3) If we denote r; = % and z € I; then 1r; <r —z <r;.

4) Each z belongs to at most three intervals I;.
)

5) For every non negative integer i there exists a positive constant ¢; such

that |D'n;(z)| < cirj_i.

Proof. Let
y/2
hy) = [ sty
y

where p is a non negative C§°(R) function with support contained in [—2, —1] and

[ p(t)dt = 1.We define
x—r
ni(z) =h <2—J—2r) :

It is not hard to see that {n;} satisfy the five conditions. For details see [3]. m



Lemma 8 Let a(y) be an (0o, N)-atom with support contained in an interval
I. There exists a sequence {aj(x)} of (0o, N)-atoms with associated intervals
{1} such that a(z) = c}_; aj(z) almost everywhere, with ¢ a positive constant
independent of a(z). In addition I = U;I; and no point x € I belongs to more
than three intervals I;.

Proof. Without lost of generality, we can assume that I = [0, r]. Since a(y)
is bounded with compact support,

Aw =57 [ =0 atay,

it is well defined.

The vanishing moments condition of a(z) implies that supp(4) C [0,r].
Moreover, it is not hard to see that DN+1A (z) = (—=1) ™ a(z) for almost
every .

Let {n; };’;700 be the functions of Lemma 7 associated to the interval (—oo, ).

Then, by condition 1) of Lemma 7, we have

Z Az (7)
j=—1
If we denote A;(x) = A(z)n;(x) and bj(x) = (—1)N T DN A4;(x), we have
that supp(b;) C [0,7] N [r — 279, r —27972y] = [;, and, since supp(4;) is
bounded, it can be shown by integration by parts that bj(x) has N vanishing
moments.
We claim that [|b;|| . < ¢, where ¢ only depends on N. By Leibniz’s formula

we have
N+1

DNTLA (2 Z cr.nDFA(x) DN 1Ry, (). (8)
For x esupp(n;) and k < N, since ||a||, < 1, we obtain

|DkA(x)| < c/r (t—I)N—k la(t)] dt < C(Tix)N+1—k.

Thus, from (8) and conditions 5) and 3) of Lemma 7, we get
N+1
p)N 1k
Ib; ()] = | DN 4;(2)] < en Z DN @) (9)

N+1 (’I" - x)N+1—k

Sen ) T Sev(iN+2) =e
k=0 j

Furthermore, as a consequence of (7), we have,

a@)=cd a; (@),

J 1



a.e x, where a;(z) = @ with ¢ as in (9) are (co, N) atoms. m

Remark 9 We observe that Ij1o follows I; and that |Ij42] < |I;| < 4|j42].

Taking into account this remark and as a consequence of Theorem 1 and the
previous lemma we have the following result:

Theorem 10 Let w € A} and 0 < p < oo . Then there is a integer N (p,w)
with the following property: given any f € HY (w) and N > N (p,w), we can
find a sequence {\} of positive coefficients and a sequence {ay ;(x)} of (o0, N)-
atoms with support contained in intervals {Ij, ;} respectively such that the sum
Zk,j Aiak,; converges unconditionally to f both in the sense of distributions and
in the HY (w)-norm. Moreover,

1Al e oy ~ kz: Ak XTIy ;
»J

LY

and,for every j, k, Ir jio follows Iy j, and [Ty jio| < [Ty ;| < 4|1 42|

5 Proof of Theorem 3

The first part of the theorem can be obtained as in the proof of Theorem 3 in
Chapter XII of [6] using the maximal function M;" (f, ¢, z) defined on [4]. For
the second part it is enough to define f(z) and to prove inequality (3).

Let f € HY (u) then there exists an atomic decomposition f = >7; - Apax ; as
the one given in Theorem 10. With the notation introduced in section 2 and for
z € Q, we define

F2) = Mg (2)an,
K

where
(z—s)p

I ) POP1
Ao (2 :AP/P(Z) (W( k,j+2 )
i (2) = X v(Iy,j+2)

By Theorem 1 there exists a constant C' such that

1+ i) oy < € |30 A+ it)lx,

p(u) ’
L)

as long as the second term is finite. Then we shall prove that

I3 s+ i),

p(u) <0 »
W) = ”f”Hi(u) < o0
w(u)
First we claim that there exist 8y ; € Ii j4+2 and a constant c¢ such that, for
every x € I, ; U Iy jy2,

w(w) (2, Br,;) < 4CM(U)(Ik,j+2)
Brj—x Ik jro|

(10)



In fact, since M~ is weak type (1, 1) with constant 2 with respect to the Lebesgue
measure, we have, for every k, j, that

Lk j+2
e

- u) (L 3 U g
‘{JE € Ik,j-‘r? M (H(u)xfk,jUIk,jJrz)(‘r) > 4N( )( kJ k7j+2)}’ :

., j+2l

So, there exists Gy ; € Iy, j4+2 such that

)(Br.g) < 1MW) Uk g42)

M_(lu’(u)xlk,jUIk,j+2 ‘Ik .+2|
3]

)

where c¢ is the left doubling constant of y(u). This implies (10).
We denote by oy, ; the left end point of I ; and

By j = {33 € (u,jy Brj) = pu(u)(z) < 74cu(“)(l’“j+2)}7
Uk j+2]

where v is the constant given in part 2 of Lemma 6. By (10) we can apply part

2 of Lemma 6 with A = 40% to obtain

p(w) (g, Br,g)

) (B ) = B (11)
Since I, j C (ag,j, Br,j), we have
HZ Ak, (u+it)|xr, ; 70w < HZ Ak (u + it)|X(ak,jw@k,j) ION
w(u) w(u)
From (11) we can apply Lemma 5, and estemate the last term by
) , 1
|3 st it)xme, | = O3 Pestutit)nt) (7 xa, ||
w(u)

By the definition of g ;(u + it), taking into account that if x € Ej ; then

p(u) (g, j+2)

() (z) < e
Ik, j+2l
and from (2), the last term is bounded by

1
p(u)

(u=s)p

ClIXA™ {le’”z)} R I et /w(x)lf“(“)l/(x)“(“)dx XEx

v(Ik,j+2) [Tk, j+2]

Iy 5
,J+2 Lo(u)

10



Since (7;;;1)7’ = £ (pu&;)# and using Holder’s inequality the last expression is

bounded by

1

P & — u u p(u
CHZ)‘IS() (M) R on |:W(Ik,j+2)1 Dy (I o)™ )] W .

¥{ks+2) [Tk j+2]

Lp(u)

<C Z)\ﬁ (W(Ik7j+2)1_”V(Ik7.j+2)“

[k, j+2|

1
p(u)
XTIk, jUTk 42Ul i +4UTk j16

Lp(u)

Therefore, by Lemma 4 and Lemma 5, we get

1

ot Pkjra) ) 7
Z)‘lz( ) ( ’ XTI, j+6

[k j+4

1
&5 ((Hkj42) 7
§ :/\15( ) ( ’ XTI, 44

[k j+2l

Hf(u + it)HHi(“)(#(u)) <C

Lp(u)

<C

Lp(u)

Now we shall consider M,Fg (z) = supy~ m warhg (t) u(t)dt. Since MF

xr
is weak (1,1) with constant 2 with respect to the weight p we have

[k j+2 U Ik jtal }) < Pk j42)

€Ty ivo: M (0w xr . oun ) (x) >4 ,
U({ ,J+2 u(,u Xk,J+2U k,J+4)() M(Ik,j+2) 2

so we can choose ¢y ; € Iy j42 such that

I .
‘ k7]+2| (12)

M* (! I I cri) <8 .
I (,u XIp,j4+2U k,J+4)( 7J) N(Ik,j+2)

3 ) . . _TTCkyj +(,—1 .
Since, for every x € Iy, j1oUly j1a, T > ci j, #(c}wy;) <M, (W X144 2UTn s 4a) (CRG),

we have from (12) that

pj2) _ 1(Cr,, @)
8l jral = T —cry

Then if we denote by di ; the right end point of I, ;44 and

B 1y ;
Frj = {.T € (Ck’j,dk’j) s p(x) > M 7
4|Ik,j+2|
we can apply part 1 of Lemma 6 to obtain
(kg =~ cr,j)

| Fk | > 5

So, by Lemma 5 and definition of F} ;,

» 1 v 1
§ : p(w) [Tk g+2) | P(W) Z p(w) ((pUkj42) | P
H M ( i+l Xy jta =C K [k,j+2] XF

qu 1 #
< CHZ AL ()7 xE, < CHZ A X1

Lp(u) Lp(u)

Lp(w) Lﬂ(“)

11



Therefore,
P
; E : )
||f(u+lt)||Hi(“)(u(u)) < CH )‘]S X1y, ;

Lz(U)

By a density argument such as the one given in page 187 of [6], we can assume
that f € Lj, (R). Thus, using (1) in the last inequality, we have

p(u)

1

U D, <57

as we wanted to prove.
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