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Abstract. In [5] we have defined and studied the Hp,+
q,α (w) spaces for weights w be-

longing to the class A+
s defined by E. Sawyer, and where the parameter α is a positive

real number. When α is a natural number, these spaces can be identified with the one-
sided Hardy space Hp

+ (w) defined in [7]. This identification could be used to define a

continuous extension of a one-sided regular Calderón-Zygmund operator from Hp,+
q,α (w)

into Hp,+
q,α (w), when the parameter α is a natural number. In this paper, we give a direct

definition of a one-sided regular Calderón-Zygmund operator on Λα ∩Hp,+
q,α (w), which is

valid for any real number α > 0, and we prove that these operators can be extended to
bounded operators from Hp,+

q,α (w) into Hp,+
q,α (w).

1. Notation, definitions and some previous results

Let f(x) be a Lebesgue measurable function defined on R. The one-sided Hardy-
Littlewood maximal functions M+f(x) and M−f(x) are defined as

M+f(x) = sup
h>0

1
h

∫ x+h

x
|f(t)| dt and M−f(x) = sup

h>0

1
h

∫ x

x−h
|f(t)| dt.

As usual, a weight w(x) is a measurable and non-negative function. If E ⊂ R is a
Lebesgue measurable set, we denote its w-measure by w(E) =

∫
E w(t)dt. A function f(x)

belongs to Ls(w), 0 < s ≤ ∞, if ‖f‖Ls(w) =
(∫∞

−∞ f(x)sw(x)dx
)1/s

is finite.

A weight w(x) belongs to the class A+
s , 1 ≤ s < ∞, defined by E. Sawyer in [7], if there

exists a constant c such that

sup
h>0

(
1
h

∫ x

x−h
w(t)dt

)(
1
h

∫ x+h

x
w(t)−

1
s−1 dt

)s−1

≤ c,

for all real number x. We observe that w(x) belongs to the class A+
1 if and only if

M−w(x) ≤ cw(x) for all real number x. It is well known that if w (x) ∈ A+
s (1 < s < ∞),

then there exists a constant cw such that the inequality

(1)
∥∥M+f

∥∥
Ls(w)

≤ cw ‖f‖Ls(w)

holds for every f ∈ Ls (w) (e.g., see [7] or [4]).
Given w(x) ∈ A+

s , 1 ≤ s < ∞, we can define a number x−∞, −∞ ≤ x−∞ ≤ ∞, such
that for almost every x, w(x) = 0 in (−∞, x−∞) and 0 < w(x) in (x−∞,+∞).

Let us fix w ∈ A+
s and let x−∞ be as before. Let Lq

loc(x−∞,∞) , 1 < q < ∞, be the
space of the real-valued functions f(x) on R that belong locally to Lq for compact subsets
of (x−∞,∞)). We endow Lq

loc(x−∞,∞) which the topology generated for the seminorms

|f |q,I =
(
|I|−1

∫
I
|f(y)|q dy

)1/q

,
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where I = [a, b] is an interval contained in (x+∞,∞) and |I| = b− a.
For f(x) in Lq

loc(x−∞,∞), we define a maximal function n+
q,α(f ;x) as

n+
q,α(f ;x) = sup

ρ>0
ρ−α |f |q,[x,x+ρ] ,

where α is a positive real number.
Let N a non negative integer and PN the subspace of Lq

loc(x−∞,∞) formed by all the
polynomials of degree at most N. We denote by Eq

N the quotient space of Lq
loc(x−∞,∞)

by PN . If F ∈ Eq
N , we define the seminorm ‖F‖q,I = inf

{
|f |q,I : f ∈ F

}
. The family of

all these seminorms induces on Eq
N the quotient topology.

Given a real number α > 0, we can write α = N +β, where N is a non negative integer
and 0 < β ≤ 1. This decomposition is unique.

For F in Eq
N , we define a maximal function N+

q,α(F ;x) as

N+
q,α(F ;x) = inf

{
n+

q,a(f ;x) : f ∈ F
}

.

We say that an element F in Eq
N belongs to the Calderón-Hardy spaceHp,+

q,α (w), 0 < p ≤ 1,

if the maximal function N+
q,α(F ;x) ∈ Lp(w). The “norm” of F in Hp,+

q,α (w) is defined as
‖F‖Hp,+

q,α (w) =
∥∥N+

q,α(F ;x)
∥∥

Lp(w)
. These spaces have been defined in [5] and, in the case

that w = 1, these spaces have been studied in [3].
We say that a class A ∈ Eq

N is a p-atom in Hp,+
q,α (w) if there exist a representative a(y)

of A and a bounded interval I such that

i) supp(a) ⊂ I ⊂ (x−∞,∞), w(I) < ∞
ii) N+

q,α(A, x) ≤ w(I)−1/p for all x ∈ (x−∞,∞).

In [5] it was proved the following result:

Theorem 1.1 (Descomposition into atoms ). Let w ∈ A+
s and 0 < p ≤ 1, such that

(α + 1/q) p ≥ s > 1 or (α + 1/q) p > 1 if s = 1. Then, if F ∈ Hp,+
q,α (w) there exists a

sequence {λi} of the number real and a sequence {Ai} of p-atoms in Hp,+
q,α (w) such that

F =
∑

λiAi en Eq
N (x−∞,∞). Moreover the series

∑
λiAi converges in Hp,+

q,α (w) and there
exist two constants c1 and c2 not depending of F , such that c1 ‖F‖p

Hp,+
q,α (w)

≤
∑
|λi|p ≤

c2 ‖F‖p

Hp,+
q,α (w)

.

As before, let α = N + β, where 0 < β ≤ 1. We denote by Λα (x−∞,∞) , the space
consisting of those classes F in Eq

N such that if f ∈ F then f ∈ CN (x−∞,∞), and there
exists a constant C such that the derivative DNf satisfies the Lipschitz condition∣∣DNf(x)−DNf(y)

∣∣ ≤ C |y − x|β for every x, y in (x−∞,∞) .

To simplify the notation, we write Λα instead Λα(x−∞,∞). In the following lemma we
state some results on the maximal function N+

q,α(F, x) and the spaces Hp,+
q,α (w) that we

will need in this paper.

Lemma 1.2. Let F ∈ Eq
N .

(i) If N+
q,α (F, x0) is finite for some x0 there exists a unique representative f of F

such that N+
q,α(F, x0) = n+

q,α(f, x0).
(ii) F belongs to Λα if and only if there exists a constant finite C such that N+

q,α(F, x) ≤
C for all x ∈ (x−∞,∞).



(iii) If F ∈ Hp,+
q,α (w) and t > 0, we can decompose F as F = Gt+Θt, where N+

q,α(Gt, x) ≤
C t for all x ∈ (x−∞,∞) and∫ ∞

x−∞

N+
q,α(Θt, x)pw(x)dx ≤ C

∫
{x∈(x−∞,∞):N+

q,α(F,x)>t}
N+

q,α(F, x)pw(x)dx.

Proof. Part (i) is Lemma 2.2 in [5], part (ii) is Lemma 3.10 in [5] and part (iii) is Lemma
4.3 in [5]. �

Corollary 1.3. The set Hp,+
q,α (w) ∩ Λα is dense in Hp,+

q,α (w).

We say that a function k in L1
loc(R− {0}) is a regular Calderón-Zygmund kernel, if

there exists a finite constant C such that the following properties are satisfied:

(a)
∣∣∣∫ε<|x|<M k(x)dx

∣∣∣ ≤ C holds for all ε and M, 0 < ε < M, and there exists

limε→0+

∫
ε<|x|<1 k(x)dx.

(b) |k(x)| ≤ C
|x| , for all x 6= 0.

(c) |k(x− y)− k(x)| ≤ C |y| |x|−2 for all x and y with |x| > 2 |y| > 0.

We observe that (b) implies that for r > 0,

(2)
∫

r≤|y|≤2r
|k(y)| dy ≤ C

∫
r≤|y|≤2r

|y|−1 dy ≤ C ′.

A regular Calderón-Zygmund kernel with support in (−∞, 0) will be called a one-sided
regular Calderón-Zygmund kernel. In [1] H. Aimar, L. Forzani and F. Mart́ın-Reyes proved
that the class of these kernels is not empty, in fact, the kernel

(3) k(x) =
sin(log |x|)
|x| log |x|

χ(−∞,0)(x),

satisfies the conditions (a), (b) and (c).
We denote

Kf(x) = v.p.

∫
k(x− y)f(y)dy = lim

ε→0+

∫
|x−y|>ε

k(x− y)f(y)dy,

the singular integral operator associated with k(y), and by K∗f(x) the maximal singular
integral operator given by

(4) K∗f(x) = sup
ε>0

∣∣∣∣∣
∫
|x−y|>ε

k(x− y)f(y)dy

∣∣∣∣∣ .
The following result can be found in [1].

Theorem 1.4 ([1]). Let w ∈ A+
s , 1 < s < ∞, and let k be a one-sided regular Calderón-

Zygmund kernel. Then, there exists a finite constant C such that∫
|K∗f(x)|s w(x)dx ≤ C

∫
|f(x)|s w(x)dx

holds for all f ∈ Ls(w).

Let n be a non negative integer, we will say that k(x) is a regular kernel of order n, if

k ∈ Cn away the origin, and

(5)
∣∣Dik(x)

∣∣ ≤ Ci

|x|i+1
, for every i = 1, 2, ..., n and every x 6= 0

Lemma 1.5. The kernel k (x) defined in (3) is regular of order n, for every n ≥ 0.



Proof. We denote g(t) = sin t
t and f(t) = log |t|. For x < 0, we get

k(x) = − (g ◦ f(x)) Df(x).

Now, since Df(x) = 1
x , we have that

Dif(x) = (−1)i−1(i− 1)! [Df(x)]i ,

for every natural number i. Arguing by induction it is easy to see that if n is natural
number, then Dnk(x) is given by a sum of n + 1 terms of the way

Ch,nDhg ◦ f(x) [Df(x)]n+1 ,

where Ch,n is a constant and 0 ≤ h ≤ n. Then, since Dhg(t) ∈ L∞ for every non negative
integer h, the lemma follows. �

2. Definition of one-sided regular Calderón-Zygmund operators on the

classes Hp,+
q,α (w) ∩ Λα

We will assume in the sequel that w ∈ A+
s , where (α + 1/q)p ≥ s > 1 or (α + 1/q)p > 1

if s = 1; and without loss of generality, we will assume that the number x−∞ associated
to the weight w is less than zero.

Lemma 2.1. Let α = N + 1 and let F ∈ Hp,+
q,α (w) ∩ Λα. If f ∈ F then

(6)
∣∣DN+1f(x)

∣∣ ≤ N+
q,α(F ;x) for every x ∈ (x−∞,∞)

The proof of this lemma is similar to the proof of Theorem 4 in [2], and it will not be
given here.

Lemma 2.2. Let F in Λα and x1 ∈ (x−∞,∞). If f(y) is the representative of F such
that N+

q,α (F, x1) = n+
q,α (f, x1), then

(7)
∣∣Dif(y)

∣∣ ≤ C
∥∥N+

q,α(F ; .)
∥∥
∞ |y − x1|α−i holds, for i = 0, 1, ..., N and y ∈ (x−∞,∞) .

Proof. The proof of this result is a corollary of the proof of Lemma 4.2 in [5]. In fact, with
the notation of that lemma, if we consider t =

∥∥N+
q,α(F ; .)

∥∥
∞ , then F coincides with the

class G that appear there. Then (7) follows from estimate (24) of Lemma 4.2 in [5]. �

Let us fix a function φ ∈ C∞
0 , 0 ≤ φ(y) ≤ 1, supp(φ) ⊂ [−2, 2] and such that φ(y) ≡ 1

in [−1, 1] . Let r > 0, and x1 ∈ R. We denote

(8) φx1,r(y) = φ

(
y − x1

r

)
.

Then, the support of φx1,r(y) is contained in [x1 − 2r, x1 + 2r] and φ(y) ≡ 1 in [x1 − r, x1 + r].
Moreover, we have that

(9)
∣∣Di(φx1,r)(y)

∣∣ ≤ Cir
−i,

for every non negative integer i. If x1 = 0, we denote φ0,r(y) by φr(y).

Lemma 2.3. Let α = N + 1, and F ∈ Hp,+
q,α (w) ∩ Λα. Let f(y) be the representative of F

such that n+
q,α (f, 0) = N+

q,α (F, 0) . If k(y) is a one-sided regular Calderón-Zygmund kernel,
then

lim
j→+∞

∣∣∣∣∫ k(−y)Dif(y)DN+1−iφj(y)dy

∣∣∣∣ = 0, for i = 0, 1, ..., N ,

and φj(y) = φ(y
j ), where φ is the function that was fixed before.



Proof. By Lemma 2.2, it follows that Dhf(0) = 0, for h = 0, 1, ..., N. Then, by the Taylor’s
formula and Lemma 2.1, we obtain

∣∣Dif(y)
∣∣ =

∣∣∣∣∣Dif(y)−
N−i∑
h=0

Di+hf(0)
yh

h!

∣∣∣∣∣ ≤ C

∫ 1

0

∣∣DN+1f(ty)
∣∣ (1− t)N+1−idt |y|N+1−i

≤ C

∫ 1

0
N+

q,α(F ; ty)dt |y|N+1−i .

From the last estimate, since supp(k) ⊂ (−∞, 0) and supp
(
DN+1−iφj

)
⊂ {j ≤ |y| ≤ 2j} ,

we have that ∣∣∣∣∫ k(−y)Dif(y)DN+1−iφj(y)dy

∣∣∣∣(10)

≤ C

∫ 2j

j

∣∣DN+1−iφj(y)
∣∣ |k(−y)| |y|N+1−i

∫ 1

0
N+

q,α(F ; ty)dt dy.

By (9) , we have that
∣∣DN+1−iφj(y)

∣∣ |y|N+1−i ≤ C, if |y| ≤ 2j. From this fact and by (10),
we obtain∣∣∣∣∫ k(−y)Dif(y)DN+1−iφj(y)dy

∣∣∣∣ ≤ C

∫ 1

0

∫ 2j

j
|k(−y)|N+

q,α(F ; ty)dydt

= C

∫ 1/j

0

∫ 2j

j
|k(−y)|N+

q,α(F ; ty)dydt + C

∫ 1

1/j

∫ 2j

j
|k(−y)|N+

q,α(F ; ty)dydt

= S1(j) + S2(j)

By (2) , it follows that the inner integrals in S1(j) and S2(j) are bounded by

∥∥N+
q,α(F ; .)

∥∥
∞

∫ 2j

j
|k(−y)| dy ≤ Cf ,

and therefore S1(j) → 0, when j → +∞. As for S2(j), we will see that[∫ 2j

j
|k(−y)|Nq,α(F ; ty)dy

]
→ 0

. Using condition (b) of k, changing variables and by Hölder’s inequality, if s1 > s ≥ 1
and for t > 1/j, we get∫ 2j

j
|k(−y)|N+

q,α(F ; ty)dy ≤
∫

tj<z<2tj
|z|−1 N+

q,α(F ; z)dz(11)

≤ (
∫

tj<z<2tj
N+

q,α(F ; z)s1w(z)dz)1/s1(
∫

z>1

w
− ś

s1 (z)

|z|s1́
dz)1/ś1

Since w
− ś1

s1 ∈ A−
ś1

, by the version for M− of (1), we have that
∫
z>1

w
− ś1

s1 (z)

|z|ś1
dz ≤ Cw, then

since

(
∫

tj<z<2tj
N+

q,α(F ; z)s1w(z)dz)1/s ≤
∥∥N+

q,α(F ; .)
∥∥ s−p

s

∞ (
∫

tj<z<2tj
N+

q,α(F ; z)pw(z)dz)1/s,

tends to zero for each t ≥ 0, we obtain S2(j) → 0, when j → +∞. �



Lemma 2.4. Let F ∈ Hp,+
q,α (w) ∩ Λα, and let f(y) be a representative of F. Let k be a

one-sided regular Calderón-Zygmund kernel of order [α] + 1. If we define

gj(x) =(12)

v.p.

∫
k(x− y)f(y)φj(y)dy −

N∑
i=0

∫
Dik(−y)f(y)(φj − φ1(y))dy

xi

i!
,

where φj(y) and φ1(y) are given as in (8), then there exists limj→∞ gj in Lq
loc (x−∞,∞).

Proof. If we denote f0 the representative of F such that n+
q,α (f0, 0) = N+

q,α (F, 0) , we
have that f(y) = f0 (y) + P (y), where P (y) is a polynomial of degree at most N. Let
us fix an interval I = [a, b] ⊂ (x−∞,∞), and we consider a natural number l such that
I ⊂ [−l/2, l/2]. Then, for every x ∈ I, and if j > l we have that

(13) gj(x)− gl(x) =
∫

[k(x− y)−
N∑

i=0

∫
Dik(−y)

xi

i!
]f(y)(φj(y)− φl(y))dy,

We will prove that the limit of the right hand side of (13) exists. We consider two cases,
the first when α is not a natural number, i.e., α = N +β where 0 < β < 1, and the second
when α = N + 1. In the first case, if x ∈ I ⊂ [−l/2, l/2], since supp(1− φl) ⊂ |y| ≥ l,
by Taylor’s formula, (5), Lemma 2.2 and the estimate |P (y)| ≤ C(|y| + 1)N , we get the
following estimate for the right hand side of (13)∫

|y|>l

∣∣∣∣∣k(x− y)−
N∑

i=0

Djk(−y)
xi

i!

∣∣∣∣∣ |f(y)| (1− φl(y))dy(14)

≤
∫
|y|>l

∣∣DN+1k(ξx− y)
∣∣ |f(y)| dy

xN+1

(N + 1)!
≤ Cl

∫
|y|>l

|ξx− y|−(N+2) |f0(y) + P (y)| dy

≤ Cl

∥∥N+
q,α(F ; .)

∥∥
∞

∫
|y|>l

|y|−(N+2) |y|N+β dy + Cl

∫
|y|>l

|y|−(N+2) (|y|+ 1)Ndy < ∞,

Therefore, by Bounded Convergence Theorem the right hand side of (13) converges to∫ [
k(x− y)−

N∑
i=0

Djk(−y)
xi

i!

]
f(y)(1− φl(y))dy.

when j → ∞. We observe that in this case, i.e., when 0 < β < 1, it is enough to assume
that F ∈ Λα to prove the lemma.

In the second case, i.e. α = N + 1, in order to show that the limit of the right hand
side of (13) exists, we have to consider the cases f (y) = P (y) and f(y) = f0 (y). For the
case f (y) = P (y) we argue as before. As for the case f = f0, we can write the right hand
side of (13) as ∫

[k(x− y)−
N+1∑
i=0

Djk(−y)
xi

i!
] f0(y)(φj(y)− φl(y))dy

+
∫

DN+1k(−y)f0(y)(φj(y)− φl(y))dy
xN+1

(N + 1)!
.(15)

For the first term of (15) , proceeding in the same way that for β < 1, we see that this
term converges to ∫

[k(x− y)−
N+1∑
i=0

Djk(−y)
xi

i!
] f0(y)(1− φl(y))dy.



Integrating by parts, we obtain that the second term of (15) coincides with

(−1)N+1

∫
k(−y)DN+1 [f0(y)(φj(y)− φl(y))] dy.

By Leibnitz’s formula, and since supp(k) ⊂ (−∞, 0) , the integral above is equal to

N+1∑
i=0

CN,i

∫ 2l

l
k(−y)Dif0(y)DN+1−i(φj(y)− φl(y))dy(16)

+
N+1∑
i=0

CN,i

∫
y>2l

k(−y)Dif0(y)DN+1−iφj(y)dy.

If j > 2l, the first sum in (16) is equal to

N∑
i=0

CN,i

∫ 2l

l
k(−y)Dif0(y)D(N+1−i)φl(y)dy

+
∫ 2l

l
k(−y)DN+1f0(y)(1− φl(y))dy.(17)

By (2) and Lemma 2.1, the last term is bounded by

C
∥∥DN+1f0

∥∥
∞

∫ 2l

l
|k(−y)| dy ≤ C

∥∥DN+1f0

∥∥
∞ ≤ C

∥∥N+
q,α(F ; .)

∥∥
∞ .

On the other hand, taking into account Lemma 2.2, the inequality
∣∣D(N+1−i)φl(y)

∣∣ ≤
Cl−(N+1−i) and (2), we obtain that each term of the sum in (17) is bounded by∫ 2l

l
|k(−y)|

∣∣Dif0(y)
∣∣ ∣∣∣D(N+1−i)φl(y)

∣∣∣ dy ≤

C
∥∥N+

q,α(F ; .)
∥∥
∞

∫ 2l

l
|k(−y)| |y|N+1−i l−(N+1−i)dy ≤ C

∥∥N+
q,α(F ; .)

∥∥
∞ .

As for the second sum in (16), by Lemma 2.3, the terms corresponding to i < N+1 converge
to zero, and the term

∫
y>2l k(−y)DN+1f0(y)φj(y)dy converges to

∫
y>2l k(−y)DN+1f0(y)dy,

in fact the pointwise convergence of the integrand is clear, and by Lemma 2.1, for s1 >
s ≥ 1, we have that∫

|y|>2l

∣∣k(−y)DN+1f0(y)φj(y)
∣∣ dy ≤

∫
y>2l

|y|−1
∣∣DN+1f0(y)

∣∣ dy

≤

(∫
|y|>2l

N+
q,α(F ; y)s1w(y)dy

)1/s1 (∫
y>2l

|y|−s′1 w
− s′1

s1 (y)dy

)1/s′1

≤ Cw,l

∥∥N+
q,α(F ; .)

∥∥ s1−p
s1

∞

(∫
|y|>2l

N+
q,α(F ; y)pw(y)dy

)1/s1

< ∞

Then, lim
j→∞

gj(x) exists in Lq
loc (x−∞,∞) . �

Taking into account the notation of the previous lemma, for F ∈ Hp,+
q,α (w)∩Λα, if f(y)

is a representative of F and k is a one-sided regular Calderón-Zygmund kernel of order



[α] + 1, we define

K0f(x) = lim
j→∞

gj(x)(18)

= lim
j→∞

[
v.p.

∫
k(x− y)f(y)φj(y)dy −

N∑
i=0

∫
Dik(−y)f(y)(φj − φ1(y))dy

xi

i!

]
,

where the limit is taking in the sense of Lq
loc (x−∞,∞) . In Lemma 2.4 we have proved that

for x ∈ I = [a, b] ⊂ [−l/2, l/2] ,

K0f(x) = lim
j→∞

gj(x)(19)

= gl(x) +
∫ [

k(x− y)−
N∑

i=0

∫
Dik(−y)

xi

i!

]
f(y)(1− φl(y))dy,

where gl(x) = v.p.
∫

k(x− y)f(y)φl(y)dy −
∑N

i=0

∫
Dik(−y)f(y)(φl(y)− φ1(y))dy xi

i! .

Lemma 2.5. Let P (y) a polynomial of degree at most N , and let k(y) be a regular
Calderón-Zygmund kernel of order N + 1, then K0P (x) coincides with a polynomial of
degree at most N in (x−∞,∞).

Proof. Without loss of generality, we can assume that P (y) = yn where 0 ≤ n ≤ N. Let
us fix a natural number l, and let x ∈ [−l/2, l/2] ∩ (x−∞,∞). Then, from (19), we have
that

K0P (x) = v.p.

∫
k(x− y)ynφl(y)dy +

∫ [
k(x− y)−

N∑
i=0

Dik(−y)
xi

i!

]
yn(1− φl(y))dy

+
N∑

i=0

∫
Dik(−y) yn(φl − φ1(y))dy

xi

i!
= S1(x) + S2(x) + S3(x),(20)

where S3(x) is a polynomial of degree at most N . Since k (y) is a regular Calderón-
Zygmund kernel of order N + 1 and ynφl (y) ∈ C∞

0 , it easy to see that

(21) DN+1S1(x) =
∫

k(x− y)DN+1[ynφ(y)]dy.

As for S2(x), we can derive under the integral sign, in fact for h = 0, 1, 2, ..., N + 1, and
|y| > l, by Taylor’s formula and (5) , we obtain that∣∣∣∣∣Dh

x [k(x− y)−
N∑

i=0

Dik(−y)
xi

i!
]

∣∣∣∣∣ ≤ C
∣∣DN+1k(ξx− y)

∣∣ |x|N+1−h ≤ Cl |y|−N−2 ,

then ∫ ∣∣∣∣∣Dh
x [k(x− y)−

N∑
i=0

Dik(−y)
xi

i!
]

∣∣∣∣∣ |yn(1− φl(y))| dy

≤ Cl

∫
|y|>l

|y|n−N−2 dy < ∞.

Therefore DN+1S2(x) =
∫ (

DN+1
x [k(x− y)]

)
yn(1−φl(y))dy and integrating by parts, we

obtain

DN+1S2(x) =
∫ (

DN+1
x [k(x− y)]

)
yn(1− φl(y))dy

=
∫

k(x− y) DN+1
y [yn(1− φl(y))]dy = −

∫
k(x− y) DN+1

y [ynφl(y)]dy,



Then, from (20), and since S3 (x) is a polynomial of degree at most N , we have that
DN+1 (K0P ) ≡ 0, and the conclusion of lemma follows. �

The previous two lemmas enable us to give the following definition:

Definition 2.6. Let k be a one-sided regular Calderón-Zygmund kernel of order [α] + 1.
Let F ∈ Λα and if, in addition, α is a natural number we assume that F also belongs to
Hp,+

q,α (w). Then, we define KF the class in Eq
N of the function

K0f(x) =(22)

lim
j→∞

[
v.p.

∫
k(x− y)f(y)φj(y)dy −

N∑
i=0

∫
Dik(−y)f(y)(φj − φ1(y))dy

xi

i!

]
,

where f(y) is a representative of F.

This definition makes sense, since by Lemma 2.4 we have that for each representative
of F, the limit in (22) exists in the sense of Lq

loc (x−∞,∞) and by Lemma 2.5 the class
KF does not depend of the representative f of F. Furthermore, if x0 ∈ (x−∞,∞) and if
we define

Kx0f(x) =(23)

lim
j→∞

[v.p.

∫
k(x− y)f(y)φx0,j(y)dy −

N∑
i=0

∫
Dik(x0 − y)f(y)(φx0,j (y)− φx0,1(y))dy

(x− x0)i

i!
],

where f is a representative of F . Routine computations show that Kx0f(x) differs from
K0f(x) in a polynomial of degree at most N, and therefore KF is also the class of Kx0f(x).
For x ∈ [a, b] ⊂ [x0 − l, x0 + l], arguing as before in order to obtain (19) , it follows that

Kx0f(x) =(24)

gx0,l(x) +
∫ [

k(x− y)−
N∑

i=0

∫
Dik(x0 − y)

(x− x0)i

i!

]
f(y)(1− φx0l(y))dy,

where

gx0,l(x) = v.p.

∫
k(x− y)f(y)φx0,l(y)dy−

N∑
i=0

∫
Dik(x0 − y)f(y)(φx0,l(y)− φx0,1(y))dy

(x− x0)i

i!
.

3. Main results

Theorem 3.1. Let w ∈ A+
s and 0 < p ≤ 1, such that (α + 1/q) p ≥ s > 1 or (α + 1/q) p >

1 if s = 1. Let K be the operator associated with a one-sided regular Calderón-Zygmund
kernel k(x) of order [α] + 1 given in the Definition 2.6. Then, K can be extended to a
bounded operator from Hp,+

q,α (w) into Hp,+
q,α (w).

If α is not a natural number, Theorem 3.1 is a consequence of Corollary 1.3 and of the
following result:



Theorem 3.2. Let F ∈ Λα, where α = N + β is not a natural number, i.e., 0 < β < 1.
Let K be the operator associated with a one-sided regular Calderón-Zygmund kernel k(x)
of order N + 1 given in the Definition 2.6. Then

N+
q,α(KF ;x) ≤ CN+

q,α(F ;x) for all x ∈ (x−∞,∞) ,

where C is a finite constant not depending on F.

Proof. Let us fix x1 ∈ (x−∞,∞) and ρ > 0. Let f(y) be the representative of F such
that N+

q,α(F ;x1) = n+
q,α (f, x1) . Then, for x ∈

[
x1, x1 + ρ

4

]
, from (24) and associating

conveniently we have that

Kx1(f(1− φx1,ρ)(x) =
N∑

i=0

∫
Dik(x1 − y)f(y)φx1,1(y)dy

(x− x1)
i

i!

−
N∑

i=0

∫
Dik(x1 − y)f(y)φx1,1(y)φx1,ρ(y)dy

(x− x1)
i

i!
(25)

+
∫ [

k(x− y)−
N∑

i=0

Dik(x1 − y)
(x− x1)

i

i!

]
(1− φx1,ρ(y))f(y)dy

= Q(x1, x)−A + B.

The integrals in Q(x1, x) are finite. In fact, by Lemma (2.2) and since supp(k) ⊂ (−∞, 0) ,
we obtain∫ ∣∣Dik(x1 − y)

∣∣ |f(y)|φx1,1(y)dy ≤ C
∥∥N+

q,α(F ; .)
∥∥
∞

∫ x1+2

x1

|y − x1|−i−1 |y − x1|α dy < ∞.

Then, Q(x1, x) is a polynomial of degree at most N. By (5) and taking into account that
supp(k(x1 − y)φx1,ρ(y)) ⊂ [x1, x1 + 2ρ], we obtain that each term in A is bounded by∫ x1+2ρ

x1

C

|y − x1|i+1
|f(y)| dyρi ≤

∞∑
j=0

C

(2−jρ)i+1

∫ x1+2−j+1ρ

x1+2−jρ
|f(y)| dyρi(26)

≤ C
∞∑

j=0

(
2−j+1ρ

)α−i

(2−j+1ρ)α

(
1

(2−j+1ρ)

∫ x1+2−j+1ρ

x1

|f(y)|q dy

)1/q

ρi ≤ CN+
q,α(F ;x1)ρα,

As for B, by Taylor’s formula, (5) and since β < 1, we obtain that it is bounded by∣∣∣∣∣
∫

DN+1k(x1 + θ(x− x1)− y)(1− φx1,ρ(y))f(y)dy
(x− x1)

N+1

(N + 1)!

∣∣∣∣∣
≤ C

∫ ∞

x1+ρ
|y − x1|−N−2 |f(y)| dyρN+1 ≤ C

∞∑
j=0

1

(2jρ)N+2

∫ x1+2j+1ρ

x1+2jρ
|f(y)| dyρN+1

≤ C

∞∑
j=0

(
2jρ
)α−(N+1)

(2jρ)α

(
1

(2jρ)

∫ x1+2j+1ρ

x1

|f(y)|q dy

)1/q

ρN+1(27)

≤ C

 ∞∑
j=0

(
2j
)β−1

N+
q,α(F ;x1)ρα = CN+

q,α(F ;x1)ρα,

Them, from (25), (26) and (27), we obtain that for x ∈
[
x1, x1 + ρ

4

]
,

(28) |Kx1(f(1− φx1,ρ)(x)−Q(x1, x)| ≤ CN+
q,α(F ;x1)ρα.



Now, taking into account that φx1,ρ has a bounded support and considering (23) , we have
that

Kx1(fφx1,ρ)(x) =(29)

v.p.

∫
k(x− y)f(y)φx1,ρ(y))dy +

N∑
i=0

∫
Dik(x1 − y)f(y)φx1,ρ(y)(1− φx1,1(y))dy

(x− x1)
i

i!
.

Arguing as in estimate (26) , we obtain that the sum in (29) is bounded by CN+
q,α(F ;x1)ρα.

As for the first term, since supp(k) ⊂ (−∞, 0) and taking into account that the operator
K is bounded in Lq, we obtain

∫ x1+ρ/4

x1

∣∣∣∣v.p.

∫
k(x− y)χ(x1,∞) (y) f(y)φx1,ρ(y))dy

∣∣∣∣q dx

≤ C

∫ ∣∣χ(x1,∞) (x) φx1,ρ (x) f(x)
∣∣q dx ≤ C

∫ x1+2ρ

x1

|f(x)|q dx ≤ CN+
q,α(F ;x1)qραq+1.

Thus

(30)
∫ x1+ρ/4

x1

|Kx1(fφx1,ρ)(x)|q dx ≤ CN+
q,α(F ;x1)qραq+1.

Therefore, from (28) and (30) we obtain that∫ x1+ρ/4

x1

|Kx1f(x)−Q(x1, x)|q dx ≤ CN+
q,α(F ;x1)qραq+1,

which implies the conclusion of the theorem. �

We observe that Theorem 3.2 gives a proof of the classic result that singular integral
operators associated with regular kernels map Λα into Λα.

As we have already mentioned if α is not a natural number, then Theorem 3.1 is
a consequence of Theorem 3.2. If α is a natural number we could prove Theorem 3.1
from the identification between Hp,+

q,α (w) and the one-sided Hardy spaces Hp
+ (w) (see [5]).

However, we give here a direct proof, which follows from Theorem 1.1 and the following
lemma:

Lemma 3.3. Let w ∈ A+
s and 0 < p ≤ 1, such that (α + 1/q) p ≥ s > 1 or (α + 1/q) p > 1

if s = 1. Let α = N + 1, and let K be the operator associated with a one-sided regular
Calderón-Zygmund kernel k(x) of order N + 2 given in the Definition 2.6. Then, if A is
a p-atom in Hp,+

q,α (w), we have that

(31)
∥∥KA

∥∥
Hp,+

q,α (w)
≤ C,

where C is a finite constant not depending on A.

Proof. Let a(y) be the representative of A with compact support, such that supp(a) ⊂ I,
where N+

q,α(A;x) ≤ w(I)−1/p . Without loss of generality we can suppose that I = [0, r].
We will prove the following estimates: let x1 ∈ (x−∞,∞) then

(i) If x1 /∈ [−2r, r],

N+
q,α(KA;x1) ≤ C

(
M+χI(x1)

)α+1/q
w(I)−1/p,

and
(ii) If x1 ∈ [−2r, r],

N+
q,α(KA;x1) ≤ C

[
w(I)−1/p +

∣∣K∗ (DN+1a
)
(x1)

∣∣] ,

where K∗ is given in (4).



Let us consider (i) . The function Ka(x) = limε→0+

∫
|y−x|>ε k(x − y)a(y)dy is a repre-

sentative of KA. Since supp(k) ⊂ (−∞, 0), if x1 > r, we have that Ka(x) = 0 for x ≥ x1,
this implies (i) for x1 > r. Now, we assume that x1 < −2r. We will argue as in the proof
of Theorem 3.2. Let us fix ρ > 0, and we assume that x ∈

[
x1, x1 + ρ

4

]
, then

K(a(1− φx1,ρ))(x) =
∫

k(x− y)a(y)(1− φx1,ρ(y))dy.

By Taylor’s formula, we have that

K(a(1− φx1,ρ)(x)(32)

=
N∑

i=0

∫
Dik(x1 − y)a(y)dy

(x− x1)
i

i!
−

N∑
i=0

∫
Dik(x1 − y)a(y)φx1,ρ(y)dy

(x− x1)
i

i!

+
∫

DN+1k(x1 + θ(x− x1)− y)(1− φx1,ρ(y))a(y)dy
(x− x1)

N+1

(N + 1)!
In the same way as in the proof of Theorem 3.2, we can see that the first sum in the right
hand side of (32) is a polynomial of degree at most N, that we denote Q(x1, x).

We observe that since n+
q,α (a,−r) = N+

q,α (A,−r) ≤ w (I)−1/p, we have that

(33)
∫ r

0
|a(y)| dy ≤ C r

(
1
2r

∫ r

−r
|a(y)|q dy

)1/q

≤ C w(I)−1/prα+1.

Let us suppose first that ρ ≥ |x1|−r
2 , and therefore that ρ ≥ |x1|

4 ≥ r
2 . Then, by the

condition (5), since supp(a(y)) ⊂ [0, r] and (33), we obtain that∣∣∣∣∣
∫

Dik(x1 − y)a(y)φx1,ρ(y)dy
(x− x1)

i

i!

∣∣∣∣∣ ≤
∫ r

0

C

|x1 − y|i+1
|a(y)| dyρi(34)

≤ C
ρi

|x1|i+1

∫ r

0
|a(y)| dy ≤ rα+1

|x1|i+1
w(I)−1/pρi ≤ rα+1

|x1|α+1 w(I)−1/pρα.

Arguing in a similar way, we get∣∣∣∣∣
∫ [

DN+1k(x1 + θ(x− x1)− y)
]
(1− φx1,ρ(y))a(y)dy

(x− x1)
N+1

(N + 1)!

∣∣∣∣∣(35)

≤ C

∫ r

0
|x1 − y|−N−2 [1− φx1,ρ(y)

]
|a(y)| dyρN+1 ≤ C

(
r

|x1|

)α+1

w(I)−1/pρα.

Now, if ρ < |x1|−r
2 , since x1 < −2r we have that [x1− 2ρ, x1 + 2ρ]∩ [0, r] = ∅, This implies

that

(36)
∫

Dik(x1 − y)a(y)φx1,ρ(y)dy = 0.

On the other hand, since ρ < |x1|−r
2 and x ∈ [x1, x1 + ρ

4 ], for any y ∈ [0, r] , we have

|x1 + θ(x− x1)− y| ≥ |x1| − |x− x1| − r ≥ |x1| −
ρ

4
− r ≥ |x1|

4
.

Then, arguing as before, we get∣∣∣∣∣
∫ [

DN+1k(x1 + θ(x− x1)− y)
]
(1− φx1,ρ(y))a(y)dy

(x− x1)
N+1

(N + 1)!

∣∣∣∣∣(37)

≤ C
1

|x1|N+2

∫ r

0
|a(y)| dyρN+1 ≤ C

(
r

|x1|

)α+1

w(I)−1/pρα.



Thus, from the estimates (34), (35) , (36) and (37) and since r
|x1| < 1, we obtain

(38)
1

ραq+1

∫ x1+ρ/4

x1

|K(a(1− φx1,ρ)(x)−Q(x1, x)|q dx ≤ C

(
r

|x1|

)αq+1

w(I)−q/p

If ρ < |x1|−r
2 , the supports of a (y) and φx1,ρ (y) are disjoint and therefore K(aφx1,ρ)(x) = 0.

If ρ ≥ |x1|−r
2 ≥ |x1|

4 , since K is bounded on Lq and by (33), we get

(39)
1

ρaq+1

∫ x1+ ρ
4

x1

|K(aφx1,ρ)(x)|q dx ≤ C

|x1|αq+1

∫ r

0
|a(x)|q dx ≤ C

rαq+1w(I)−q/p

|x1|αq+1 .

Then, from (38) and (39) , we obtain

1
ρa+1/q

(
∫ x1+ ρ

4

x1

|Ka(x)−Q(x1, x)|q dx)1/q ≤ C
[
M+χI(x1)

]α+1/q
w(I)−1/p,

which implies (i).
Now, we prove (ii). Let x1 ∈ [−2r, r] . Let f(y) ∈ A, such that n+

q,α(f ;x1) = N+
q,α(A;x1).

Let ρ > 0 and x ∈
[
x1, x1 + ρ

4

]
. In the proof of Theorem 3.2 we saw that Q(x1, x) =∑N

i=0

∫
Dik(x1 − y)f(y)φx1,1(y)dy (x−x1)i

i! is a polynomial and furthermore

Kx1(f(1− φx1,ρ)(x)−Q(x1, x) = −
N∑

i=0

∫
Dik(x1 − y)f(y)φx1,1(y)φx1,ρ(y)dy

(x− x1)
i

i!

+
∫

[k(x− y)−
N∑

i=0

Dik(x1 − y)
(x− x1)

i

i!
](1− φx1,ρ(y))f(y)dy(40)

= I1 + I2.

Proceeding as in estimate (26) we obtain that |I1| is bounded by Cw(I)−1/pρα. Subtracting

and adding DN+1k(x1−y) (x−x1)N+1

(N+1)! in the integrand of I2 and arguing as in estimate (27),
we get that

(41) |I2| ≤ Cw(I)−1/pρα +
∣∣∣∣∫ [DN+1k(x1 − y)

]
(1− φx1,ρ(y))f(y)dy

∣∣∣∣ ρα.

Integrating by parts and by Leibnitz’s formula, we have∣∣∣∣∫ [DN+1k(x1 − y)
]
(1− φx1,ρ(y))f(y)dy

∣∣∣∣ = ∣∣∣∣∫ k(x1 − y)DN+1 [(1− φx1,ρ(y))f(y)] dy

∣∣∣∣
≤

∣∣∣∣∣
N+1∑
i=1

CN,i

∫
k(x1 − y)DN+1−if(y)Di (1− φx1,ρ(y)) dy

∣∣∣∣∣(42)

+
∣∣∣∣∫ k(x1 − y)DN+1a(y) (1− φx1,ρ(y)) dy

∣∣∣∣ .
For i ≥ 1, the support of Di (1− φx1,ρ(y)) is contained in {y : ρ ≤ |y − x1| ≤ 2ρ}. Then,
since supp(k) ⊂ (−∞, 0),

∣∣Diφx1,ρ(y)
∣∣ ≤ Ciρ

−i and by Lemma 2.2 we get that the sum in
the second line of (42) is bounded by Cw(I)−1/p. As for the last summand of (42), using



Lemma 2.1, we obtain that it is bounded by∣∣∣∣∣
∫

ρ<|y−x1|≤2ρ
|k(x1 − y)|

∣∣DN+1a(y)
∣∣ dy

∣∣∣∣∣+
∣∣∣∣∣
∫
|y−x1|>2ρ

k(x1 − y)DN+1a(y)dy

∣∣∣∣∣
≤ Cw(I)−1/p

∫
ρ<|y−x1|≤2ρ

|k(x1 − y)|+ sup
ρ>0

∣∣∣∣∣
∫
|y−x1|>2ρ

k(x1 − y)DN+1a(y)dy

∣∣∣∣∣
≤ Cw(I)−1/p + K∗(DN+1a)(x1).(43)

Then, from (40), (41) and (43) , we obtain for x ∈
[
x1,x1 + ρ

4

]
that

|Kx1(f(1− φx1,ρ)(x)−Q(x1, x)| ≤ C
[
w(I)−1/p + K∗(DN+1a)(x1)

]
ρα.

On the other hand, proceeding as in the proof of (30) in Theorem 3.2, we get∫ x1+ρ/4

x1

|Kx1(fφx1,ρ(x)|q dx ≤ Cw(I)−q/pραq+1,

Thus, we have that(∫ x1+ρ/4

x1

|Kx1f(x)−Q(x1, x)|q dx

)1/q

≤ C
[
w(I)−1/p + K∗(DN+1a)(x1)

]
ρα+1/q,

which implies (ii).
Finally, we will see that (i) and (ii) imply the lemma. By (i) and (1), we obtain∫
(x−∞,∞)∩x/∈[−2r,r]

N+
q,α(KA;x)pw(x)dx ≤ Cw(I)−1

∫ [
M+χI(x1)

](α+1/q)p
w(x)dx ≤ C.

By (ii), Hölder’s inequality and Theorem 1.4, we get that∫
(x−∞,∞)∩x∈[−2r,r]

N+
q,α(KA;x)pw(x)dx ≤ Cw +

∫ r

−2r
K∗(DN+1a)(x1)pw(x)dx

≤ Cw +
(∫

K∗(DN+1a)(x1)p(N+2)w(x)dx

) 1
N+2

(∫ r

−2r
w(x)dx

)1− 1
N+2

≤ Cw + Cw

(∫ r

0

(
DN+1a)(x1)

)p(N+2)
w(x)dx

) 1
N+2

w([−2r, r])1−
1

N+2 ≤ Cw,

which concludes the proof. �
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