ONE-SIDED SINGULAR INTEGRAL OPERATORS
ON CALDERON-HARDY SPACES

S. OMBROSI AND C. SEGOVIA

ABSTRACT. In [5] we have defined and studied the H2'% (w) spaces for weights w be-
longing to the class A defined by E. Sawyer, and where the parameter « is a positive
real number. When « is a natural number, these spaces can be identified with the one-
sided Hardy space HY (w) defined in [7]. This identification could be used to define a
continuous extension of a one-sided regular Calderén-Zygmund operator from HE'% (w)
into Hg;i (w), when the parameter « is a natural number. In this paper, we give a direct
definition of a one-sided regular Calderén-Zygmund operator on Ao NHEL (w), which is
valid for any real number o > 0, and we prove that these operators can be extended to
bounded operators from H5'% (w) into HYE (w).

1. NOTATION, DEFINITIONS AND SOME PREVIOUS RESULTS

Let f(z) be a Lebesgue measurable function defined on R. The one-sided Hardy-
Littlewood maximal functions M ™ f(x) and M~ f(z) are defined as

x+h T
M* f(z) = sup - / F®]dt and M~ f(z)=sup~ / (1) dt.
h>0 x T

h h>0 N Jo—n

As usual, a weight w(z) is a measurable and non-negative function. If £ C R is a
Lebesgue measurable set, we denote its w-measure by w(E) = [, w(t)dt. A function f(z)

1/s
belongs to L*(w), 0 <'s < 00, if [|f|| s,y = (ffooo f(:p)sw(a:)dx) / is finite.

A weight w(z) belongs to the class A, 1 < s < oo, defined by E. Sawyer in [7], if there

exists a constant ¢ such that
1

1 T 1 z+h R S—
sup </ w(t)dt) (/ w(t) sldt) <cg,
h>0 \Nv Jop h Js

for all real number x. We observe that w(z) belongs to the class A if and only if
M~ w(x) < cw(zx) for all real number z. It is well known that if w (z) € AT (1 < s < ),
then there exists a constant ¢, such that the inequality

(1) M| ey < o 11| e )

holds for every f € L® (w) (e.g., see [7] or [4]).

Given w(z) € AF, 1 < s < oo, we can define a number z_.,, —00 < T_o < 00, such
that for almost every x, w(z) =0 in (—00,2_o) and 0 < w(x) in (T_o, +00).

Let us fix w € A and let z_ be as before. Let L} (2_o0,00) ,1 < ¢ < 00, be the
space of the real-valued functions f(x) on R that belong locally to L? for compact subsets

of (z_o,0)). We endow L} (2_o,00) which the topology generated for the seminorms

1/q
fl,1 = (ml / If(y)lqdy> |
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where I = [a, b] is an interval contained in (40, 00) and |I| = b — a.
For f(z) in L] (% o0, 00), we define a maximal function n/ ,(f; ) as

nea(f5) = S 0™ Fly i)
p>0

where « is a positive real number.
Let N a non negative integer and Py the subspace of L] (z_,00) formed by all the

polynomials of degree at most N. We denote by E}J\, the quotient space of L?O (%00, 00)

by Py. If F' € EY;, we define the seminorm |||, ; = inf {’f‘q,l fe F} . The family of

all these seminorms induces on EY; the quotient topology.

Given a real number o > 0, we can write a = N + 3, where IV is a non negative integer
and 0 < § < 1. This decomposition is unique.

For F in EY;, we define a maximal function N, (F;x) as

N;:a(F;x) :inf{n;a(f;x) :fEF}.

We say that an element F in E% belongs to the Calderén-Hardy space Hf]’ﬂ (w),0<p<1,
if the maximal function N, (F;z) € LP(w). The “norm” of F' in HE'S (w) is defined as
HFHH‘;;J(w) = “N(;fa(F;x)“Lp(w) . These spaces have been defined in [5] and, in the case
that w = 1, these spaces have been studied in [3].
We say that a class A € EY is a p-atom in H‘fl’jj{ (w) if there exist a representative a(y)

of A and a bounded interval I such that

i) supp(a) C I C (z—s0,0), w(I) < 00

i) Njo(A,2) <w(I)~Y? for all © € (20, 00).

In [5] it was proved the following result:

Theorem 1.1 (Descomposition into atoms ). Let w € Al and 0 < p < 1, such that
(a+1/q)p>s>1or(a+1/q)p > 1ifs=1. Then, if F € HY& (w) there exists a
sequence {\;} of the number real and a sequence {A;} of p-atoms in HY& (w) such that
F =3 NA; en EY (-, 00). Moreover the series Yy A\;A; converges in Hd (w) and there
exist two constants ¢; and cy not depending of F, such that ¢ HFH% <SP <

C2 ||F||€_{g,;r(w) :

b (w)

As before, let « = N + 3, where 0 < # < 1. We denote by A, (_,0), the space
consisting of those classes F' in EY such that if f € F then f € CN (1_s,00), and there
exists a constant C such that the derivative D f satisfies the Lipschitz condition

’DNf(l‘) — DNf(y)‘ < C |y—z|° for every z,y in (z_s0,00).

To simplify the notation, we write A, instead Ay (2_0,0). In the following lemma we
state some results on the maximal function qu o(F,z) and the spaces Hf]’,’;f (w) that we
will need in this paper.

Lemma 1.2. Let F € EY,.

(i) If N;a (F,xq) is finite for some xo there exists a wunique representative f of F
such that N (F,x0) = nt(f, zo).

(ii) F belongs to Ay if and only if there exists a constant finite C' such that N;a (F,x) <
C for all x € (r_0,00).



(i17) If F € Hd (w) andt > 0, we can decompose F as F = G4+6y, where N, (G, x) <
Ct for all x € (r_x0,00) and

/ (O ) w(z)dr < C N o (F, x)Pw(z)d.
{ze(x_oo,oo):Néfa(F,x)>t}

Proof. Part (i) is Lemma 2.2 in [5], part (i) is Lemma 3.10 in [5] and part (7i7) is Lemma

4.3 in [5]. 0

Corollary 1.3. The set Hbd (w) N Ay is dense in HE& (w).

We say that a function k in L} (R —{0}) is a regular Calderén-Zygmund kernel, if
there exists a finite constant C' such that the following properties are satisfied:

(a) f5<‘x|<M k(m)dw‘ < C holds for all ¢ and M, 0 < ¢ < M, and there exists
lim,_, g+ €<|x‘<1 k(z)dz.
(b) |k(z)| < ‘xl,forallx;&()
(¢) |k(z —y) — k(z)| < C|y||z| ™2 for all # and y with |z| > 2|y| > 0.
We observe that (b) implies that for r > 0,

(2) / k()| dy < C / Wyl dy < C.
r<l|y|<2r r<l|y|<2r

A regular Calderén-Zygmund kernel with support in (—oo,0) will be called a one-sided
regular Calderén-Zygmund kernel. In [1] H. Aimar, L. Forzani and F. Martin-Reyes proved
that the class of these kernels is not empty, in fact, the kernel

3) o) = Tl og 2]

satisfies the conditions (a), (b) and (c).
We denote

Kf(z) = vp. / k(z — ) f(y)dy = lim k(z — v) F(y)dy,

e=0% Jjz—y|>e

sin(log |z|) Ye)(®)

the singular integral operator associated with k(y), and by K* f(z) the maximal singular
integral operator given by

(4) K™ f(z) = sup

[ He ) wy).

The following result can be found in [1].

Theorem 1.4 ([1]). Let w € Al, 1 < s < oo, and let k be a one-sided reqular Calderdn-
Zygmund kernel. Then, there exists a finite constant C such that

/ K@) w)ds < [ 11

Let n be a non negative integer, we will say that k(x) is a regular kernel of order n, if

holds for all f € L*(w)

k € C™ away the origin, and

(5) ‘D k(x for every i = 1,2, ...,n and every x # 0

C;
ol

Lemma 1.5. The kernel k (z) defined in (3) is regular of order n, for every n > 0.



Proof. We denote g(t) = 2% and f(t) = log|t|. For z < 0, we get
k(z) = —(go f(x)) Df(x).
Now, since D f(x) = —, we have that
D'f(z) = (=1)""'(i = ) [Df(2)],

for every natural number 7. Arguing by induction it is easy to see that if n is natural
number, then D"k(z) is given by a sum of n 4 1 terms of the way

ChnD"go f(x) [Df ()",

where C},, is a constant and 0 < h < n. Then, since D"g(t) € L* for every non negative
integer h, the lemma follows. O

2. DEFINITION OF ONE-SIDED REGULAR CALDERON-ZYGMUND OPERATORS ON THE

CLASSES HEd (w) N A,

We will assume in the sequel that w € A, where (a+1/q)p > s> 1or (a+1/q)p>1
if s = 1; and without loss of generality, we will assume that the number x_., associated
to the weight w is less than zero.

Lemma 2.1. Let a = N +1 and let F € Ho'd (w) N Ay. If f € F then
(6) ‘DN'Hf(x)} < NS (Fsx) for every © € (2_o0, 00)

The proof of this lemma is similar to the proof of Theorem 4 in [2], and it will not be
given here.

Lemma 2.2. Let F in A, and 21 € (T—c0,00). If f(y) is the representative of F such
that N7, (F,x1) = n, (f,z1), then

7) |D'f(y)

F; )HOO ly — xllo‘_i holds, fori=0,1,...,N and y € (z_x,0) .

Proof. The proof of this result is a corollary of the proof of Lemma 4.2 in [5]. In fact, with
the notation of that lemma, if we consider ¢t = HN(I o (F )HOO , then F' coincides with the
class G that appear there. Then (7) follows from estimate (24) of Lemma 4.2 in [5]. O

Let us fix a function ¢ € C§°, 0 < ¢(y) < 1, supp(¢) C [—2,2] and such that ¢(y) =
n [—1,1]. Let » > 0, and x; € R. We denote

®) Gerny) = 6 (y‘) |

r

Then, the support of ¢, »(y) is contained in [z — 27,21 + 2r] and ¢(y) = 1in [z1 — r, 21 + 7).
Moreover, we have that

9) }Di(@rlm)(y)‘ < Ci?”_ia

for every non negative integer i. If x; = 0, we denote ¢o(y) by ¢r(y).

Lemma 2.3. Leta = N + 1, and F € Ho'd (w) N Ag. Let f(y) be the representative of F
such that n} ., (f,0) = N, (F,0). If k(y) is a one-sided regular Calderdn-Zygmund kernel,
then
hrf '/ y) DN (y)dy| = 0, fori=0,1,...,N,
j—+oo
and ¢;(y) = gi)(f , where ¢ is the function that was fized before.



Proof. By Lemma 2.2, it follows that D" f(0) = 0, for h = 0, 1, ..., N. Then, by the Taylor’s
formula and Lemma 2.1, we obtain

‘sz(y)‘ _ ‘ ZDH-hf <C/ ‘DN—Hf ty)!( )N—i—l Zdt ‘y|N+1 i

< C/ L(Fity)dt |y/N T

From the last estimate, since supp(k) C (—o00,0) and Supp(DN“*iqu) c{j <yl <25},
we have that

(10) ' [HnD D0y ) \
27 )
< 0/ | DN ()| k()] |y[V T / W(F;ty)dt dy.
J

By (9), we have that [ DNT17¢;(y)| ly|N T < € if |y| < 2j. From this fact and by (10),
we obtain

25
‘/ y) D' f(y) DN, (y dy’ < C/ / )| N (Fs ty)dydt

/5 r2j
_C/O /J !k(—y)\qua(F;ty)dydtJrc/ /] |k(—y)| N (F; ty)dydt
=51(4) + S2(4)

By (2), it follows that the inner integrals in S;(j) and Sa(j) are bounded by

2j
NG, [ Kl dy < ©5.
J

and therefore Si(j) — 0, when j — +o00. As for Sa(j), we will see that

[ /j2j |k(—y)| Ngo(F; ty)dy] o

. Using condition (b) of k, changing variables and by Holder’s inequality, if s1 > s > 1
and for t > 1/j, we get

2j
-1
(1) [ RCnING sy < [ N2
J tj<z<2tj

< / N (Fs 2)*tw(z)dz) /o / @ D) gy
tj<z<2tj 1 |z|™
s

_i s
Since w *1 € A, by the version for M~ of (1), we have that [ _, wl i,l(z) dz < C,,, then

2

since
(/ ]\fc;fa(F;z)s1 2)dz) 1/s < H I H = (/ N;a(F;z)pw(z)dz)l/s,
tj<z<2tj tj<z<2tj

tends to zero for each ¢ > 0, we obtain S2(j) — 0, when j — +o0. O



Lemma 2.4. Let F € HY'd (w) N Ay, and let f(y) be a representative of F. Let k be a
one-sided regular Calderdn-Zygmund kernel of order [a] + 1. If we define

(12) g4(x) =

v-p./k‘(:r—y) y)¢i(y)dy — Z/D’ Y) (o5 — ¢ (y ))dy%,

where ¢j(y) and $1(y) are given as in (8), then there exists lim;_. gj in L?OC (T 00, 00).

Proof. If we denote fy the representative of F' such that n o (f0,0) = NI (F,0), we

have that f(y) = fo(y) + P (y), where P (y) is a polynomlal of degree at most N. Let

us fix an interval I = [a,b] C (2_~,00), and we consider a natural number [ such that
C [-1/2,1/2]. Then, for every = € I, and if j > [ we have that

(13) g0 - a@) = [k - / DAk(=1) 1 £(0) () — ),

We will prove that the limit of the rlght hand side of (13) exists. We consider two cases,
the first when « is not a natural number, i.e., « = N + 8 where 0 < 3 < 1, and the second
when « = N + 1. In the first case, if z € I C [-1/2,1/2], since supp(l — ¢;) C |y| > [,
by Taylor’s formula, (5), Lemma 2.2 and the estimate |P(y)| < C(|y| + 1)V, we get the
following estimate for the right hand side of (13)

(14) / ey ZDﬂk D £ (1 = auy))dy

N+1
< [ DYk - )| 1@ dy e < G [ el o) + P ()l dy
ly|>1 (N+1)! ly|>1
< G [Nga(F: )] /| | Ny P ay - /| | Ny Iyl + )y < oo,
y|> y|>

Therefore, by Bounded Convergence Theorem the right hand side of (13) converges to

/ [ ZD% “ﬂ] F) (1 - i)y

when j — co. We observe that in this case, i.e., when 0 < 8 < 1, it is enough to assume
that F' € A, to prove the lemma.

In the second case, i.e. a = N + 1, in order to show that the limit of the right hand
side of (13) exists, we have to consider the cases f (y) = P (y) and f(y) = fo (y). For the
case f (y) = P (y) we argue as before. As for the case f = fj, we can write the right hand
side of (13) as

N+1 Z

e =)= 3 D0 T )6, 0) — o)y
N+1
(15) + / DN o) (650) — )y

For the first term of (15), proceeding in the same way that for 5 < 1, we see that this
term converges to

N+1

[ =)= 3 DR 5] o)1~ o)y

=0



Integrating by parts, we obtain that the second term of (15) coincides with

(—p)NH / E(—) DY [fo(w) (65() — d1(v))] dy.

By Leibnitz’s formula, and since supp(k) C (—o0,0), the integral above is equal to

N+1 2l ' '
1o >~ O [ D Rl DY 6 (0) = )y
3 CN”/ k(=y)D’ foly) DM 0;(y)dy.
i=0 y>21

If j > 2I, the first sum in (16) is equal to
N 21 . ‘
> Cui [ M) D fn DY D)y
=0

21
(17) + /l E(—y) DV fo(y)(1 — du(w))dy.

By (2) and Lemma 2.1, the last term is bounded by

oo’

21
CIDY ol [ Ik(ldy < €DV < € NG (P

On the other hand, taking into account Lemma 2.2, the inequality ‘D(NJrl*i)(bl(y)‘ <
C1~(N+1=9) and (2), we obtain that each term of the sum in (17) is bounded by

21 )
[ Rl P ) [+ ay <

2l )
C || Nyt (F ')H‘”/l k(=) lyM 0 TN dy < O||NSL ()

oo’

As for the second sum in (16), by Lemma 2.3, the terms corresponding to i < N+1 converge
to zero, and the term fy>2l k(—y)DNHfO(y)d)j(y)dy converges to fy>2[ k(—y) DN fo(y)dy,
in fact the pointwise convergence of the integrand is clear, and by Lemma 2.1, for s; >
s > 1, we have that

/ Ik(—y)DN“fo(y)@(y)\dyS/ ly| = DV fo(y)| dy
ly|>21 21

y>
1/s1 o 1/s
< ( [ N y>51w<y>dy) ([ e )
ly|>21 y>21
1/81
51°P
< Cu || NG (F; )| 51 (/ NJa(F;y)pw(y)dy> < o0
ly|>21
Then, lim g;(x) exists in L (z_s,00). O
j—o0

Taking into account the notation of the previous lemma, for F' € HYS (w) N Ay, if f(y)
is a representative of F' and k is a one-sided regular Calderén-Zygmund kernel of order



[a] + 1, we define

(18) Kof(z) = lim g;(x)
N ‘ J,’i
= lim [p [ a0ty - Y [ DRu1w0; - 0wy |
i=0 ’

where the limit is taking in the sense of L}  (2_0,00). In Lemma 2.4 we have proved that
forz € I =[a,b] C [-1/2,1/2],

(19) Kof(z) = lim g;(2)

=
8
\
<
~—
\
S
X
\
N
> 8
| IS
~
—~~
<
~
_
\
&
S
N
U
=

where g,(z) = v.p. [ k(z — y) f(y)ai(y)dy — SN o [ Dik(—y) f(y)(dn(y) — é1(y))dy &

Lemma 2.5. Let P(y) a polynomial of degree at most N, and let k(y) be a regular
Calderén-Zygmund kernel of order N + 1, then KoP(x) coincides with a polynomial of
degree at most N in (x_oo, 00).

Proof. Without loss of generality, we can assume that P(y) = y™ where 0 < n < N. Let
us fix a natural number [, and let x € [—1/2,1/2] N (£ -0, 00). Then, from (19), we have
that

N i
KoP(z) = v.p. / k(z —y)y"ou(y)dy + / k(x —y) — Z le(—y)?! y" (1 — di(y))dy
N | xi =0
(20) £3° [ DR 10— iy = $160) + S2(0) + So(0),
i=0 ’

where S3(x) is a polynomial of degree at most N. Since k(y) is a regular Calderdén-
Zygmund kernel of order N + 1 and y"¢; (y) € C§°, it easy to see that

(21) DN, (2) = / K — ) DV o ()dy.

As for Sy(x), we can derive under the integral sign, in fact for h = 0,1,2,..., N + 1, and
ly| > 1, by Taylor’s formula and (5), we obtain that

N i

i T _ _N_

Dylk(z —y) = Y _ D'h(-y) ]| < C[DY h(ga — )| 2] V" < Gy,
i=0 ’

then
N i

/ ‘Dz[m )= Y DRy ]

=0

ly" (1 = ¢u(y))| dy

< G / N2 dy < oo,
ly|>1

Therefore DV 1S5 (2) = [ (DX [k(z — y)]) y"(1—#i(y))dy and integrating by parts, we
obtain

DNHGy(z) = / (DY [k — ) 5™ (1 — éu(w))dy

- / k(z — y) DYy (1 — dy(y))]dy = — / Kz - y) DYy n(y)]dy,



Then, from (20), and since S3(x) is a polynomial of degree at most N, we have that
DNF1(KyP) =0, and the conclusion of lemma follows. O

The previous two lemmas enable us to give the following definition:

Definition 2.6. Let k be a one-sided reqular Calderén-Zygmund kernel of order [a] + 1.
Let F' € Ay and if, in addition, o is a natural number we assume that F' also belongs to
ng;f(w). Then, we define KF the class in E} of the function

(22) Kof (ﬂf) =

mlkp/%@—wﬂ> /Dk V(65— br(w))dy

J—00

where f(y) is a representative of F.

This definition makes sense, since by Lemma 2.4 we have that for each representative
of F, the limit in (22) exists in the sense of L]  (2_s,00) and by Lemma 2.5 the class
KF does not depend of the representative f of F. Furthermore, if 7g € (7_o,00) and if
we define

(23) Koo f(x) =
Jim - [ ke =) f0)0rni 01 /Dlwm— )F5) (B ) = B )y 20,

where f is a representative of F'. Routine computations show that Ky, f(x) differs from
Ko f(z) in a polynomial of degree at most N, and therefore K F is also the class of K, f(x).
For x € [a,b] C [xo — [, zp + ], arguing as before in order to obtain (19), it follows that

(24) Ko f(x) =
N i
i@ + [ (o= —Z;/UMm—w“ff“]ﬂwu—%Mwm%

where

Gzo,1(x) = v.p. /k‘ =) f(Y)Pwo1(y)dy—

/bkm (X%M)—%MM@@;@Z

7!

3. MAIN RESULTS

Theorem 3.1. Let w € A} and 0 < p <1, such that (a+1/q)p > s> 1 or (a+1/q)p >
1if s =1. Let K be the operator associated with a one-sided reqular Calderdn-Zygmund
kernel k(x) of order [a] + 1 given in the Definition 2.6. Then, K can be extended to a
bounded operator from Hia (w) into HYd (w).

If « is not a natural number, Theorem 3.1 is a consequence of Corollary 1.3 and of the
following result:



Theorem 3.2. Let F' € Ay, where o = N + 8 is not a natural number, i.e., 0 < 3 < 1.
Let K be the operator associated with a one-sided regular Calderdn-Zygmund kernel k(x)
of order N + 1 given in the Definition 2.6. Then

+ (K. + .
N/ (KF;2) < ON/,(F;z) for all x € (v, 00),
where C' is a finite constant not depending on F.

Proof. Let us fix 1 € (x_o0,00) and p > 0. Let f(y) be the representative of F' such
that N (F;z1) = nj, (f,21). Then, for z € [z1, 21+ 4], from (24) and associating
conveniently we have that

Ky (f(1 = 631 ) (@ / Dk(z1 — 1) (1) e, 1 (1)d (x‘z,””)
o~ [ (z — 1)
(25) - / DIk = 1) (0 1) p )y T
- N (x — 1)
+/ k(z —y) - ZD k(x1 — y)Z,ll (1= ¢z,0(¥)) f(y)dy
1=0 ’

= Q(z1,z) — A+ B.

The integrals in Q(x1, x) are finite. In fact, by Lemma (2.2) and since supp(k) C (—o0,0),
we obtain
xr1+2

[ 101 = | )| sy < CINGED L, [ g =y = [y < .

1

Then, Q(:cl, x) is a polynomial of degree at most N. By (5) and taking into account that

supp(k(x1 — Y)bz,,0(y)) C 21,21 + 2p], we obtain that each term in A is bounded by
z1+42p C X C x14+2771p ,
eo [l <Y | (W) dyp
1 ly — x1| i 320 (277p) + z14+2-Jp

00 2 ]+1) 1 xl+2*j+1p 1/q
<oyt s oy | F@)Tdy) < ONG(F ),
1

§=0
As for B, by Taylor’s formula, (5) and since < 1, we obtain that it is bounded by
($ . ﬂl'l)N+1

/DN_Hk(xl + 9(55 — xl) — y)(l - ¢x1,p(y))f(y)dyw

oo o e 1 x1+2911
<C ly — a1 |7V f(y) dypN T < CZW/ | ()| dyp™*!
~— .

Zitp 1+29p
io: o ! S q v N+1
o7 | fwltdy)
(21) > ) )l
<[ S @)7 | Nfu(Fi)p® = ONJo(Fyan)p”,
j=0

Them, from (25), (26) and (27), we obtain that for z € [z1, 21 + £],
(28) | Ky (f(1 = bay,p)(2) = Qa1, )| < ONJ o (Fia1)p



Now, taking into account that ¢, , has a bounded support and considering (23) , we have
that

(29) le(f¢:r1,p)( ):
v [ K@ =) f@)0n, o) dy+2 - [ D1 =000 )1 st

i!
Arguing as in estimate (26) , we obtaln that the sum in (29) is bounded by C N, (F;xz1)p®
As for the first term, since supp(k) C (—o0,0) and taking into account that the operator
K is bounded in L9, we obtain

z1+p/4 q

/ op. / B — 9)X(or00) (4) F(0)borp ()| da

z1

:):1+2p
< C [ It @) 01 (@) S <€ [ @)1 e < O (i)t
Thus
x1+p/4 1

(30) / Ko (fbonp)(@)| d < ON(F; )1 poet

Therefore, from (28) and (30) we obtain that

$1+p/4 .
[ @) - Qe < ONG (P,

1
which implies the conclusion of the theorem. O

We observe that Theorem 3.2 gives a proof of the classic result that singular integral
operators associated with regular kernels map A, into A,.

As we have already mentioned if « is not a natural number, then Theorem 3.1 is
a consequence of Theorem 3.2. If « is a natural number we could prove Theorem 3.1
from the identification between H5'4 (w) and the one-sided Hardy spaces H ? (w) (see [5]).
However, we give here a direct proof, which follows from Theorem 1.1 and the following
lemma:

Lemma 3.3. Letw € A and 0 < p <1, such that (a +1/q)p>s>1or(a+1/q)p>1
if s=1. Let « = N + 1, and let K be the operator associated with a one-sided reqular
Calderén-Zygmund kernel k(x) of order N + 2 given in the Definition 2.6. Then, if A is
a p-atom in Hyd (w), we have that

(31) HKAHHg;j;(w) <G,
where C' is a finite constant not depending on A.

Proof. Let a(y) be the representative of A with compact support, such that supp(a) C I,
where N/, (A;2) < w(I )~1/P . Without loss of generality we can suppose that I = [0, 7].
We will prove the following estimates: let z1 € (x_o0,00) then

(i) If z1 & [-2r,7],
Nt (K As21) < C (M xp(an) ™ w(n)~177,

and
(i) If 2y € [-2r, 7],

Nia(BAsm) < C [w(D)™7 + |K* (DY 1a) (1)

],

where K* is given in (4).



Let us consider (i). The function Ka(z) = lim,_,q+ f\yfx|>s k(x — y)a(y)dy is a repre-

sentative of K A. Since supp(k) C (—oc0,0), if z1 > r, we have that Ka(x) = 0 for z > z,
this implies (i) for z; > r. Now, we assume that z; < —2r. We will argue as in the proof
of Theorem 3.2. Let us fix p > 0, and we assume that x € [wl,ml + ] , then

K(a(1 = ¢g,,p)) () = /k(x —y)a(y)(1 = by p(y))dy

By Taylor’s formula, we have that

(32) a6,
S %
- Z/Dik(m —y)a(y)dy (35 - xl /Dz z1 —y)aly )¢$1,p(y)dy(x_ﬂxl)
=0
DNt k(1 + 0 1 @ =2
+ [ DYk Gar + 8o = 20) = )1 = 6 )alv) T

In the same way as in the proof of Theorem 3.2, we can see that the first sum in the right
hand side of (32) is a polynomial of degree at most N, that we denote Q(x1, ).

We observe that since n/, (a, —r) = N, (A, —r) <w (I)"*/?, we have that

q,x

(33) /0 la(y)|dy < C r (2170 /_ |a(y)|qdy) Y 0w gt

Let us suppose first that p > 12|77, and therefore that p > % > 5. Then, by the

condition (5), since supp(a(y )) [0,7] and (33), we obtain that

r C )
< / Y )|y’
0 |z — gy

pz r ra—i—l . ) Toé—i-l )
= Ci-i-l/ la(y)|dy < z‘+1w(I) /ppl < a+1w([) /ppa.
17 Jo | |z1]

|21

(34) '/DZ (1 —y)aly )%hp(y)dyw

7!

Arguing in a similar way, we get

(35) / [DVH k(e + 0z — 21) — )] (1 — bup(y))a(y)dy

r a-+1
N_ r 1/
<c /0 21— g2 [1 = bur p()] lay)] dyp™+ sc() w(l)~ 7.

Now, if p < ‘m;r, since 21 < —2r we have that [x1 —2p, x1 +2p] N[0, 7] = 0, This implies
that

(30 [ Dbl — yats)en, )y =0
On the other hand, since p < % and x € [z1, 21 + ], for any y € [0,7], we have
T
|1+ 0(x — 1) —y| > |x1] — |z — 21| — 7 > |x1|—§—r2 uﬂ

Then, arguing as before, we get

(x - 1‘1)N+1

/ [DN_Hk(xl + 9(;p — xl) - y)] (1 - ¢w1,P(y))a(y)dyW

a+1
) e

(37)

|z1]

SC!&; |N+2/ la(y |dypN+1<C<



Thus, from the estimates (34), (35), (36) and (37) and since | 77 < 1, we obtain

z1+p/4 r aq+1
3 [ K= b)) — Qs <€ (L) o

1 ‘wl,

|$1| r

Ifp < , the supports of a (y) and ¢, , (y) are disjoint and therefore K (a¢s, ,)(x) = 0.
If p > \x12\ L > %, since K is bounded on L? and by (33), we get

1 144 C r
@) e [ Kt )@ < o [Matolran <0
1

reatlyy(1)=9/p

aq+1

z1 |1]

Then, from (38) and (39), we obtain

1
pa+1/q

([ Ko@) - Qo)) < € )] wn

which implies (i).
Now, we prove (ii). Let 1 € [=2r,7]. Let f(y) € A, such that n/,(f;21) = N, (4;21).
Let p > 0 and z € [:pl,ml + ] In the proof of Theorem 3.2 we saw that Q(z1,z) =

SN [ Dik(z1 — 9) F(y) ey a1 (y )dy . ml) is a polynomial and furthermore

(x — xl)i
il

N
Ko (1 = ba p)(@) — Qa,a) = =3 / Dik(r — 9)f (9)born(4) o p(0)dy
1=0
N

@+ i = 3 D -0 0 b ) Sy
=0
=1 + I

Proceeding as in estimate (26) we obtain that |I;] is bounded by Cw(I)~'/Pp®. Subtracting
N+1

and adding DV 1k (2, —y)% in the integrand of I» and arguing as in estimate (27),

we get that

(1) IRl < Cw() Vet + ] [ DY ka1 = )] (1= b ) S

Integrating by parts and by Leibnitz’s formula, we have

[ 10 k1 =) (0= o0 = | [ = D= 00 S

N+1

(42) < Z Cn.i / k(zy —y) DN f () DY (1 = oy p(y) dy

| o= 0¥ al) (1= ) ]

For i > 1, the support of D' (1 — ¢y, ,(y)) is contained in {y : p < |y — 21| < 2p}. Then,
since supp(k) C (—00,0), |D'¢s, »(y)| < Cip~" and by Lemma 2.2 we get that the sum in
the second line of (42) is bounded by Cw(I)~Y/?. As for the last summand of (42), using




Lemma 2.1, we obtain that it is bounded by

/ k(z1 —y)| |DY M a(y)| dy| + / k(z1 — y) DN a(y)dy

p<ly—z1|<2p ly—z1]>2p

< cu( i | b= o)l +sup| [ k= DY aly)dy
p<ly—z1]|<2p p>0 | Jly—21]>2p

(43) < Cw(I)7H? + K*(DN™a)(zy).
Then, from (40), (41) and (43), we obtain for z € [z1,z1 + £] that

[y (F(1 = B0,) (@) = Qlar, @) < € [w(D)77 + KX(DNa)(an)| o

On the other hand, proceeding as in the proof of (30) in Theorem 3.2, we get

x1+p/4
/ Koy (fpay p()|? da < Cw(I)~9/Ppoa+t,

1

Thus, we have that

xz1+p/4 1/q
</ Ko, f(2) = Qa1 2)|” dw) < C [w(n) ™ + KX (DY a)(ay)| oo/,

1
which implies (ii).
Finally, we will see that (i) and (ii) imply the lemma. By (i) and (1), we obtain
/( S ]Nz;,_a(FA; z)Pw(x)de < Cw([)_l/ [M+X1($1)](Q+I/Q)pw(x)dx <c

By (ii), Holder’s inequality and Theorem 1.4, we get that

T

/ N (BAPw(a)de < Cy + [ K*(DVHa)(21)Pu(a)de
(2—c0,00)NTE[—2r,7]

—2r
N [T =%
< Cu+ (/ K*(DN+1G)($1)p(N+2)’tU(:U)dJJ> (/ w(:z:)da;)
—2r
1
T )
< oG [ OV )™ wwie) " w2 <
0
which concludes the proof. O
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