SHARP A, BOUNDS FOR CALDERON-ZYGMUND OPERATORS AND
THE RELATIONSHIP WITH A PROBLEM OF MUCKENHOUPT AND
WHEEDEN
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ABSTRACT. For any Calderén-Zygmund operator T' the following sharp estimate is
obtained for 1 < p < oc:

171 oy < e lloll
where v, = p’% log (e + p%l) In the case when p = 2 and T is a classical convolution
singular integral, this result is due to R. Fefferman and J. Pipher. Then, we deduce the

following weak type (1,1) estimate related to a problem of Muckenhoupt and Wheeden:

iu%)\w{:ﬂ ER":|Tf(x) > A} < cgo(HwHAl)/ | f| wdz,
> R™

where w € Ay and ¢(t) = t(1 + log™ t)(1 + log™ log™ t).

1. INTRODUCTION
In 1971, C. Fefferman and E.M. Stein [8] established the following extension of the
classical weak-type (1,1) property of the Hardy-Littlewood maximal operator M:

(1.1) sup)\w{xe]R”:Mf(x)>)\}§c/ |f| Mwdz,

A>0

where a weight w is supposed to be a non-negative locally integrable function and
w(E) = [, w(z)dx. This estimate yields some sort of duality for M. It was used in [8] to
derive the vector-valued extension of the classical estimates for the Hardy-Littlewood

maximal function which has many important applications.
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Assume now that T is a Calderén-Zygmund singular integral operator. It was
conjectured by B. Muckenhoupt and R. Wheeden [11] many years ago that the full
analogue of (1.1) holds for 7', namely,

(1.2) sup \w{z € R" : |T'f(x)| >)\}§c/ |f| Mwdzx.
A>0 Rn

Note that the question whether inequality (1.2) holds is still open even for the Hilbert
transform. Moreover, it is still unknown whether the following weaker variant of (1.2) is
true: if w is an A; weight, then
(1.3) supAw{z € R" : |Tf(z)| > A\} < ¢||w]|a, / | flwdz.

A>0 R®
Recall that w is an A; weight if there is a finite constant ¢ such that Mw < cw a.e., and
where ||w]| 4, denotes the smallest of these c.

In this paper we shall be concerned with inequality (1.3) which can be called as the
weak Muckenhoupt and Wheeden conjecture. As far as we know, (1.3) was shown to be
true by S. Buckley [1] only for power weights ws(x) = |#|7(17%) 0 < § < 1. Observe that
for these weights (1.2) holds as well (since [Jwsl|, ws < cMws). However, in the general
case the problem seems to be much more complicated.

In order to study inequality (1.3), it is natural to ask first about the dependence of
LP(w) operator norms of T on [jwl|, for p > 1. We discuss briefly the known results in this
direction.

Denote by « the best possible exponent in the inequality

(1.4) 17y < cnplleol

In the case when p = 2 and T' = H is the Hilbert transform, R. Fefferman and J. Pipher [7]
established that @ = 1. The proof is based on sharp A; bounds for appropriate square
functions on L?(w) from the works [2, 3], in particular, a deep inequality of
Chang-Wilson-Wolff was used. One can show that this approach yields a = 1 also for

p > 2. However, for 1 < p < 2 the same approach gives the estimate o < 1/2+ 1/p. Also,

that approach works only for classical singular integrals.



A1 BOUNDS AND A PROBLEM OF MUCKENHOUPT AND WHEEDEN 3

We mention some recent results by S. Petermichl and A. Volberg [15] for the
Ahlfors-Beurling transform and by S. Petermichl [13, 14] for the Hilbert transform and the

Riesz Transforms. In these papers it has been shown that if 7" is any of these operators,

then
max{1, P 1}
(1.5) 1Tl oy < Comllwll, (1 <p<o0),
and the exponent max{l } is best possible. Here A, denotes the class of weights for
which

ot =op (G ) f )

Note that A; C A,, and ||w||Ap < [lwl|,,- Therefore, (1.5) clearly gives that v =1 in (1.4)
when p > 2. However, (1.5) cannot be used in order to get the sharp exponent « in the
range 1 < p < 2, becoming the exponent worst when p gets close to 1. Note also that the
proofs in [13, 14, 15] are based on the Bellman function technique, and it is not clear
whether they can be extended to the wider class of Calderén-Zygmund operators.

In this paper we use a different approach to show that for any Calderén-Zygmund
operator, the sharp exponent in (1.4) is a = 1 for all 1 < p < co. Our method is more
closely related to the classical Calderon-Zygmund techniques but refining some known
estimates.

We state now our main theorems. From now on 7" will always denote any

Calderén-Zygmund operator (see next section).

Theorem 1.1. Let 1 < p < oo and let v, = ppT21 log (e + ]ﬁ) There is a constant

c=c(n,T) such that for any A; weight w,
(1.6) ||T||Lp(w) < CVpr”Al'

The main result related to the weak Muckenhoupt and Wheeden conjecture (1.3) is the

following.
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Theorem 1.2. Let p(t) = t(1 +log™ t)(1 +log" log™ t). There is a constant ¢ = c(n,T)
such that for any Ay weight w and for all f € L'(w)(R"),

sup \w{zr € R" : |[T'f(z)] > A\} < cg0(||w||A1)/Rn | f|wdz.

A>0

It was observed by R. Fefferman and J. Pipher [7] that if an operator 7" satisfies (1.4)
for some pyg, then ||T||» = O(p®),p — oo. It is well-known that for Calderén-Zygmund
operators, ||T||» = O(p), and this grows is best possible. This shows that estimate (1.6) is
sharp in terms of ||w||4, for any 1 < p < co. The behavior of the constant v, from (1.6)
when p — 1 is important for us as well. The size of v, is reflected in the function ¢ from
Theorem 1.2. We do not know whether v, in (1.6) can be replaced by v, = p‘%. One can

easily show that this is really true if the weak Muckenhoupt and Wheeden conjecture holds.

2. PRELIMINARIES

In this section we gather definitions and results, some of them very well-known, that

will be used later.

2.1. Maximal Operator. Given a locally integrable function f on R", the
Hardy-Littlewood maximal operator M is defined by
1
Mf(x) =sup— [ [f(y)ldy,
Q>3z ’Q| Q
where the supremum is taken over all cubes () containing the point z.
We shall be using several well-known facts concerning M. First, if 0 < § < 1, then

(Mf)° € A; (see [6]), and

Cn

1—6

(2.) IpYl, <
Second is the Fefferman-Stein inequality [8] saying that for any weight w,
(2.2 1M £l gy < 8 1y (1< P < 00),

where as usual p’ denotes the dual exponent of p, p’ = Pt
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2.2. Calderén-Zygmund operators. A continuos linear operator 7' : C3°(R") — D'(R")
is a Calderén-Zygmund operator if T extends to a bounded operator on L?(R™), and whose
distributional kernel K coincides away from the diagonal z = y in R™ x R", with a function

K so that
Tf(z)= [ K(z,y)f(y)dy

RTL
whenever f € C§°(R") and = ¢ supp(f), and satisfies the standard estimates, namely, the

size estimate
c

K(z,y)| < ——
Ke)| < o

and the regularity condition: for some € > 0,

xr — z|°
K (o) = Kl + 1K) = Kl 2)| < e,

whenever 2|z — z| < |z — y|.
We shall need the following inequality proved in [10]: there is a constant ¢ = ¢(n, T')
such that for any weight w, any 0 < § <1,

(2.3) 1T f | wdz < c/ (M f)° Mwdz,
Rn

n

for any function f such that the left hand side is finite. Note that actually this inequality
was proved in [10] for § = 1 but exactly the same proof gives the case 0 < 0 < 1 as well.

Indeed, the proof was based on the combination of two inequalities:

n

|flwdz < cn/ (M f)Mwdz

Rn
and

ME(Tf)(z) < exnrMf(@),

where the operator M f f is defined by

M f (@) = supinf((f = c)x)" (AIQ])

(f* denotes the non-increasing rearrangement). Now, in order to prove (2.3) for 0 < < 1

it suffices to combine the same inequalities with the fact that

ME(fP)(x) < MT(f)(@) (0<d<1).
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3. PROOFS OF MAIN RESULTS
In this section we give the proof of the main results. We first start by proving the

following lemma related to the well-known reverse Holder property of the A; weights.

Indeed, if w € A; there are constants » > 1 and ¢ > 1 such that
(3.1) M,w(z) < cw(x),
where as usual M,w = (Mw")'/". We shall need a more precise version of (3.1).

Lemma 3.1. Let w € Ay, and let r, =1+ W Then
(3.2) M, w(z) < 2{[w[la, w(z).

The classical proofs of this property for any A, weights produce non linear growth

constants.

Proof of Lemma 3.1. We begin as known proofs of (3.1) (cf. [5, 9]). Setting wg = ﬁ fQ w,
we have by the converse weak-type estimate for M (see [16]) that for A > wyg,
/ w(@)de < 2\{z € Q - Mbw(z) > A}
{xEQ:Méw(x)>)\}
where Mg is the dyadic maximal operator restricted to a cube ). Multiplying both parts

of this inequality by A~ and then integrating and using Fubini’s theorem, we get

29
/(Mg)w)‘swdx < (wQ)‘S/ wdx + /(Mgw)5+1dx
0 0 d+1 Jg
Setting here § = m, we obtain
1 1

—/ wtde < —/(Mgw)‘swdx < 2(wg)*t,

Ql Jq @l Jo
which proves (3.2). O

Lemma 3.2. Let T be any Calderon-Zygmund operator. There is a constant ¢ = c¢(n,T)

such that for any weight w and for any p,r > 1, the following a priori estimate holds

(3.3) ( /R n J%dx) " plog(l £ p) ( /]R n %m) W,
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for any function f such that the left hand side is finite.

Remark 3.3. Tt is well-known that the weight (M,w)!~? belongs to the A, class with
constant independent of w. Hence, (3.3) is a particular example of Coifman-type estimate
(see [4]). However, known proofs applied to this concrete weight give only the constant
C(p) = 2P on the right-hand side. Our novel point here is an improvement of the behavior
of C(p) to C(p) = plog(p+ 1). Observe that it is still unclear for us whether log(p + 1) can

be removed.

Proof of Lemma 3.2. Denote the left-hand side of (3.3) by I. For 0 < a < 1 we have
T\
I* =
|G

Next, using (2.3) and Hélder’s inequality, we obtain

= sup T f|*h(Mw)'~“dz.

Lp/a(Mr'lU) ”h”L(p/a)/(]\lrw):1 R™

R”

|T f|*h(Mw)' ~*dx < c/ (M f)*M (h(M,w)*~*)dx
M (h(Myw)' ™)

(1)
M,w Lo/a(M,w) (Mrw)l—a
Since 1 — (1 — a)(p/a) = a(p —1)/(p — a), by (2.1) and (2.2) we get

HM(h(Mrww-a)
(Myw) '

<c

L®/a) (M,w)

= HM(h(Mrw)l*a)HL(p/a>'((Mrw)a(p—m/(p—m)

L®/a) (Mw)

<< (=ap 1>/r<p—a>>l_a <t (1;)1-;.

=

Therefore,
/a—1/p 1/p
cp Ve 1 ! / 1
1< (%) V| ——
=\a <1—a> M G
Choosing now a = %, we get (3.3). O

The following lemma plays a key role in the proof of the main results.

Lemma 3.4. Let v, = pplelog (e + ﬁ) Then for any p > 1 and for 1 <r < 2,

1

1-1/pr
(3.4) HTf”Lp(w) < CVP(T _ 1) ||fHLP(Mrw)’

where ¢ = c(n,T).
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Proof. Let T* be the adjoint operator of 7. Then (3.4) is equivalent to

f

w

(3.5)

()

1 )11/1"“

< cyp<
r —
LP' (M,w)

where 1/p+ 1/p’ = 1. Since T™* is also Calder6n-Zygmund operator, by (3.3) we obtain

Mf Mf

1%
<ct

< cp'log(1 + p')
L' (Myw) p

(3.6) ‘

LY (Myw)

Next we note that by Holder’s inequality,

p,,1/p < L ?“) l/pr( 1 —1/p (pr)’)l/(pr)/
|@|/fw v (\Q!/ r@\/(f“’ ) ’

(Mf) < (Mrw)p"lM((fw—l/p)@”’)p//(m/.

and hence,

From this, by the classical maximal theorem (i.e., by (2.2) with w = 1),

i )" || f
<o) |
LP (Myw) p = (pT’) w LP (w)
rp — IN1=1pr || f 1 \I=Ver || f
<o) ),
r—1 W | 11 () r—1 W | 14/ ()

Combining this inequality with (3.6), we get (3.5), and therefore the proof is complete. O

Proof of Theorem 1.1. Setting r = 1+ 1/2"||w|| 4, in (3.4) and using Lemma 3.1, we get

1Tl Ly < CVpllwllAlllwllp ||f||Lp
It remains to notice that

14 1
ol ™7 < Bl < e
1 1

g

Proof of Theorem 1.2. The proof mainly follows the same lines as the proof of Theorem 1.6

n [12], and therefore we omit some details.
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Applying the Calderén-Zygmund decomposition to f and A, we get a family of pairwise
disjoint cubes {Q;} such that A < |f|g, < 2"A. Let Q = U;Q;, and Q= U,2Q;. Next, let
f=g+0b, where g =}, fo,xq,(%) + f(z)xac(z). Then

w{z e R": |Tf(z)| > A} < w(Q)+w{ze (Q)°: |Th(z) > N2}
+ wiz € (Q)°: [Tg(z)| > A/2}.
For the first two terms we have the following estimate (see [12, p. 303])

w(®@) +wire @) Th@)] > M2} < 5 | 1f|Mwds

cf[wlla,

(3.7) < -

| f| wdz.
R

Now, by (3.4), for any p > 1 we have

w{z € (Q)°: |Tg(x)| > A/2}

1 \p-1/r1

< p

<c(v=7)" " L ol Mewxy)da
1 \p-1/r1l

<c(-=7) 75 Ll My

Arguing exactly as in [12, p. 303], we obtain

|g|Mr<wX(§)c)d$ <c | fIM,wdzx.
R R™

Combining this estimate with the previous one, and then taking r = 1 + 1/2""||w|| 4,, by

Lemma 3.1 we get

wlo € @ Tyl > 32 < LS [y pjua,

Settlng here P = 1 + m

gives

wle € @ (o) > 3/2) < LU [ fpus

This estimate combined with (3.7) completes the proof. O
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