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Abstract. For any Calderón-Zygmund operator T the following sharp estimate is

obtained for 1 < p < ∞:

‖T‖
Lp(w)

≤ c νp ‖w‖A1
,

where νp = p2

p−1 log
(
e + 1

p−1

)
. In the case when p = 2 and T is a classical convolution

singular integral, this result is due to R. Fefferman and J. Pipher. Then, we deduce the

following weak type (1, 1) estimate related to a problem of Muckenhoupt and Wheeden:

sup
λ>0

λw{x ∈ Rn : |Tf(x)| > λ} ≤ c ϕ(‖w‖
A1

)
∫

Rn

|f |wdx,

where w ∈ A1 and ϕ(t) = t(1 + log+ t)(1 + log+ log+ t).

1. Introduction

In 1971, C. Fefferman and E.M. Stein [8] established the following extension of the

classical weak-type (1, 1) property of the Hardy-Littlewood maximal operator M :

(1.1) sup
λ>0

λ w{x ∈ Rn : Mf(x) > λ} ≤ c

∫
Rn

|f |Mwdx,

where a weight w is supposed to be a non-negative locally integrable function and

w(E) =
∫

E
w(x)dx. This estimate yields some sort of duality for M . It was used in [8] to

derive the vector-valued extension of the classical estimates for the Hardy-Littlewood

maximal function which has many important applications.
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Assume now that T is a Calderón-Zygmund singular integral operator. It was

conjectured by B. Muckenhoupt and R. Wheeden [11] many years ago that the full

analogue of (1.1) holds for T , namely,

(1.2) sup
λ>0

λw{x ∈ Rn : |Tf(x)| > λ} ≤ c

∫
Rn

|f |Mwdx.

Note that the question whether inequality (1.2) holds is still open even for the Hilbert

transform. Moreover, it is still unknown whether the following weaker variant of (1.2) is

true: if w is an A1 weight, then

(1.3) sup
λ>0

λ w{x ∈ Rn : |Tf(x)| > λ} ≤ c‖w‖A1

∫
Rn

|f |wdx.

Recall that w is an A1 weight if there is a finite constant c such that Mw ≤ c w a.e., and

where ‖w‖A1 denotes the smallest of these c.

In this paper we shall be concerned with inequality (1.3) which can be called as the

weak Muckenhoupt and Wheeden conjecture. As far as we know, (1.3) was shown to be

true by S. Buckley [1] only for power weights wδ(x) = |x|−n(1−δ), 0 < δ < 1. Observe that

for these weights (1.2) holds as well (since ‖wδ‖A1
wδ ≤ cMwδ). However, in the general

case the problem seems to be much more complicated.

In order to study inequality (1.3), it is natural to ask first about the dependence of

Lp(w) operator norms of T on ‖w‖
A1

for p > 1. We discuss briefly the known results in this

direction.

Denote by α the best possible exponent in the inequality

(1.4) ‖T‖
Lp(w)

≤ cn,p‖w‖α

A1
.

In the case when p = 2 and T = H is the Hilbert transform, R. Fefferman and J. Pipher [7]

established that α = 1. The proof is based on sharp A1 bounds for appropriate square

functions on L2(w) from the works [2, 3], in particular, a deep inequality of

Chang-Wilson-Wolff was used. One can show that this approach yields α = 1 also for

p > 2. However, for 1 < p < 2 the same approach gives the estimate α ≤ 1/2 + 1/p. Also,

that approach works only for classical singular integrals.
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We mention some recent results by S. Petermichl and A. Volberg [15] for the

Ahlfors-Beurling transform and by S. Petermichl [13, 14] for the Hilbert transform and the

Riesz Transforms. In these papers it has been shown that if T is any of these operators,

then

(1.5) ‖T‖
Lp(w)

≤ cp,n‖w‖
max{1, 1

p−1
}

Ap

(1 < p < ∞),

and the exponent max{1, 1
p−1
} is best possible. Here Ap denotes the class of weights for

which

‖w‖
Ap
≡ sup

Q

(
1

|Q|

∫
Q

w(x)dx

) (
1

|Q|

∫
Q

w(x)−1/(p−1)dx

)p−1

< ∞.

Note that A1 ⊂ Ap, and ‖w‖
Ap
≤ ‖w‖

A1
. Therefore, (1.5) clearly gives that α = 1 in (1.4)

when p ≥ 2. However, (1.5) cannot be used in order to get the sharp exponent α in the

range 1 < p < 2, becoming the exponent worst when p gets close to 1. Note also that the

proofs in [13, 14, 15] are based on the Bellman function technique, and it is not clear

whether they can be extended to the wider class of Calderón-Zygmund operators.

In this paper we use a different approach to show that for any Calderón-Zygmund

operator, the sharp exponent in (1.4) is α = 1 for all 1 < p < ∞. Our method is more

closely related to the classical Calderón-Zygmund techniques but refining some known

estimates.

We state now our main theorems. From now on T will always denote any

Calderón-Zygmund operator (see next section).

Theorem 1.1. Let 1 < p < ∞ and let νp = p2

p−1
log

(
e + 1

p−1

)
. There is a constant

c = c(n, T ) such that for any A1 weight w,

(1.6) ‖T‖
Lp(w)

≤ c νp ‖w‖A1
.

The main result related to the weak Muckenhoupt and Wheeden conjecture (1.3) is the

following.
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Theorem 1.2. Let ϕ(t) = t(1 + log+ t)(1 + log+ log+ t). There is a constant c = c(n, T )

such that for any A1 weight w and for all f ∈ L1(w)(Rn),

sup
λ>0

λw{x ∈ Rn : |Tf(x)| > λ} ≤ c ϕ(‖w‖
A1

)

∫
Rn

|f |wdx.

It was observed by R. Fefferman and J. Pipher [7] that if an operator T satisfies (1.4)

for some p0, then ‖T‖Lp = O(pα), p →∞. It is well-known that for Calderón-Zygmund

operators, ‖T‖Lp = O(p), and this grows is best possible. This shows that estimate (1.6) is

sharp in terms of ‖w‖A1 for any 1 < p < ∞. The behavior of the constant νp from (1.6)

when p → 1 is important for us as well. The size of νp is reflected in the function ϕ from

Theorem 1.2. We do not know whether νp in (1.6) can be replaced by ν ′p = p2

p−1
. One can

easily show that this is really true if the weak Muckenhoupt and Wheeden conjecture holds.

2. Preliminaries

In this section we gather definitions and results, some of them very well-known, that

will be used later.

2.1. Maximal Operator. Given a locally integrable function f on Rn, the

Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)|dy,

where the supremum is taken over all cubes Q containing the point x.

We shall be using several well-known facts concerning M . First, if 0 < δ < 1, then

(Mf)δ ∈ A1 (see [6]), and

(2.1) ‖(Mf)δ‖
A1
≤ cn

1− δ
.

Second is the Fefferman-Stein inequality [8] saying that for any weight w,

(2.2) ‖Mf‖
Lp(w)

≤ cn p′ ‖f‖
Lp(Mw)

(1 < p < ∞),

where as usual p′ denotes the dual exponent of p, p′ = p
p−1

.
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2.2. Calderón-Zygmund operators. A continuos linear operator T : C∞
0 (Rn) → D′(Rn)

is a Calderón-Zygmund operator if T extends to a bounded operator on L2(Rn), and whose

distributional kernel K coincides away from the diagonal x = y in Rn ×Rn, with a function

K so that

Tf(x) =

∫
Rn

K(x, y)f(y)dy

whenever f ∈ C∞
0 (Rn) and x 6∈ supp(f), and satisfies the standard estimates, namely, the

size estimate

|K(x, y)| ≤ c

|x− y|n
and the regularity condition: for some ε > 0,

|K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ c
|x− z|ε

|x− y|n+ε
,

whenever 2|x− z| < |x− y|.

We shall need the following inequality proved in [10]: there is a constant c = c(n, T )

such that for any weight w, any 0 < δ ≤ 1,

(2.3)

∫
Rn

|Tf |δwdx ≤ c

∫
Rn

(Mf)δMwdx,

for any function f such that the left hand side is finite. Note that actually this inequality

was proved in [10] for δ = 1 but exactly the same proof gives the case 0 < δ < 1 as well.

Indeed, the proof was based on the combination of two inequalities:∫
Rn

|f |wdx ≤ cn

∫
Rn

(M#
λn

f)Mwdx

and

M#
λ (Tf)(x) ≤ cλ,n,T Mf(x),

where the operator M#
λ f is defined by

M#
λ f(x) = sup

Q3x
inf
c

((f − c)χQ)∗(λ|Q|)

(f ∗ denotes the non-increasing rearrangement). Now, in order to prove (2.3) for 0 < δ < 1

it suffices to combine the same inequalities with the fact that

M#
λ (|f |δ)(x) ≤ M#

λ (f)(x)δ (0 < δ < 1).
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3. Proofs of main results

In this section we give the proof of the main results. We first start by proving the

following lemma related to the well-known reverse Hölder property of the A1 weights.

Indeed, if w ∈ A1 there are constants r > 1 and c ≥ 1 such that

(3.1) Mrw(x) ≤ c w(x),

where as usual Mrw = (Mwr)1/r. We shall need a more precise version of (3.1).

Lemma 3.1. Let w ∈ A1, and let rw = 1 + 1
2n+1‖w‖A1

. Then

(3.2) Mrww(x) ≤ 2 ‖w‖A1 w(x).

The classical proofs of this property for any Ap weights produce non linear growth

constants.

Proof of Lemma 3.1. We begin as known proofs of (3.1) (cf. [5, 9]). Setting wQ = 1
|Q|

∫
Q

w,

we have by the converse weak-type estimate for M (see [16]) that for λ > wQ,∫
{x∈Q:Md

Qw(x)>λ}

w(x)dx ≤ 2nλ|{x ∈ Q : Md
Qw(x) > λ}|,

where Md
Q is the dyadic maximal operator restricted to a cube Q. Multiplying both parts

of this inequality by λδ−1 and then integrating and using Fubini’s theorem, we get∫
Q

(Md
Qw)δwdx ≤ (wQ)δ

∫
Q

wdx +
2nδ

δ + 1

∫
Q

(Md
Qw)δ+1dx

Setting here δ = 1
2n+1‖w‖A1

, we obtain

1

|Q|

∫
Q

wδ+1dx ≤ 1

|Q|

∫
Q

(Md
Qw)δwdx ≤ 2(wQ)δ+1,

which proves (3.2). �

Lemma 3.2. Let T be any Calderón-Zygmund operator. There is a constant c = c(n, T )

such that for any weight w and for any p, r ≥ 1, the following a priori estimate holds

(3.3)

(∫
Rn

|Tf |p

(Mrw)p−1
dx

)1/p

≤ cp log(1 + p)

(∫
Rn

(Mf)p

(Mrw)p−1
dx

)1/p

,



A1 BOUNDS AND A PROBLEM OF MUCKENHOUPT AND WHEEDEN 7

for any function f such that the left hand side is finite.

Remark 3.3. It is well-known that the weight (Mrw)1−p belongs to the A∞ class with

constant independent of w. Hence, (3.3) is a particular example of Coifman-type estimate

(see [4]). However, known proofs applied to this concrete weight give only the constant

C(p) ≈ 2p on the right-hand side. Our novel point here is an improvement of the behavior

of C(p) to C(p) = p log(p + 1). Observe that it is still unclear for us whether log(p + 1) can

be removed.

Proof of Lemma 3.2. Denote the left-hand side of (3.3) by I. For 0 < α < 1 we have

Iα =

∥∥∥∥(
|Tf |
Mrw

)α∥∥∥∥
Lp/a(Mrw)

= sup
‖h‖

L(p/α)′ (Mrw)
=1

∫
Rn

|Tf |αh(Mrw)1−αdx.

Next, using (2.3) and Hölder’s inequality, we obtain∫
Rn

|Tf |αh(Mrw)1−αdx ≤ c

∫
Rn

(Mf)αM(h(Mrw)1−α)dx

≤ c

∥∥∥∥(
Mf

Mrw

)α∥∥∥∥
Lp/a(Mrw)

∥∥∥∥M(h(Mrw)1−α)

(Mrw)1−α

∥∥∥∥
L(p/a)′ (Mrw)

.

Since 1− (1− α)(p/α)′ = α(p− 1)/(p− α), by (2.1) and (2.2) we get∥∥∥∥M(h(Mrw)1−α)

(Mrw)1−α

∥∥∥∥
L(p/a)′ (Mrw)

= ‖M(h(Mrw)1−α)‖L(p/a)′ ((Mrw)α(p−1)/(p−α))

≤ c
p

α

(
1

1− α(p− 1)/r(p− α)

)1−α
p

≤ c
p

α

(
1

1− α

)1−α
p

.

Therefore,

I ≤
(cp

α

)1/α
(

1

1− α

)1/α−1/p (∫
Rn

(Mf)p 1

(Mrw)p−1
dx

)1/p

.

Choosing now α = log(1+p)
1+log(1+p)

, we get (3.3). �

The following lemma plays a key role in the proof of the main results.

Lemma 3.4. Let νp = p2

p−1
log

(
e + 1

p−1

)
. Then for any p > 1 and for 1 < r < 2,

(3.4) ‖Tf‖
Lp(w)

≤ cνp

( 1

r − 1

)1−1/pr

‖f‖
Lp(Mrw)

,

where c = c(n, T ).
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Proof. Let T ∗ be the adjoint operator of T . Then (3.4) is equivalent to

(3.5)

∥∥∥∥ T ∗f

Mrw

∥∥∥∥
Lp′ (Mrw)

≤ cνp

( 1

r − 1

)1−1/pr
∥∥∥∥ f

w

∥∥∥∥
Lp′ (w)

,

where 1/p + 1/p′ = 1. Since T ∗ is also Calderón-Zygmund operator, by (3.3) we obtain

(3.6)

∥∥∥∥ T ∗f

Mrw

∥∥∥∥
Lp′ (Mrw)

≤ cp′ log(1 + p′)

∥∥∥∥ Mf

Mrw

∥∥∥∥
Lp′ (Mrw)

≤ c
νp

p

∥∥∥∥ Mf

Mrw

∥∥∥∥
Lp′ (Mrw)

.

Next we note that by Hölder’s inequality,

1

|Q|

∫
Q

fw−1/pw1/p ≤
(

1

|Q|

∫
Q

wr

)1/pr (
1

|Q|

∫
Q

(fw−1/p)(pr)′
)1/(pr)′

,

and hence,

(Mf)p′ ≤ (Mrw)p′−1M
(
(fw−1/p)(pr)′

)p′/(pr)′

.

From this, by the classical maximal theorem (i.e., by (2.2) with w ≡ 1),∥∥∥∥ Mf

Mrw

∥∥∥∥
Lp′ (Mrw)

≤ c
( p′

p′ − (pr)′

)1/(pr)′
∥∥∥∥ f

w

∥∥∥∥
Lp′ (w)

= c
(rp− 1

r − 1

)1−1/pr
∥∥∥∥ f

w

∥∥∥∥
Lp′ (w)

≤ cp
( 1

r − 1

)1−1/pr
∥∥∥∥ f

w

∥∥∥∥
Lp′ (w)

.

Combining this inequality with (3.6), we get (3.5), and therefore the proof is complete. �

Proof of Theorem 1.1. Setting r = 1 + 1/2n+1‖w‖A1 in (3.4) and using Lemma 3.1, we get

‖Tf‖
Lp(w)

≤ cνp‖w‖A1
‖w‖

1
p
(1− 1

r
)

A1

‖f‖
Lp(w)

.

It remains to notice that

‖w‖
1
p
(1− 1

r
)

A1

≤ ‖w‖
1

2n+1p‖w‖A1

A1

≤ e
1

2n+1pe .

�

Proof of Theorem 1.2. The proof mainly follows the same lines as the proof of Theorem 1.6

in [12], and therefore we omit some details.
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Applying the Calderón-Zygmund decomposition to f and λ, we get a family of pairwise

disjoint cubes {Qj} such that λ < |f |Qj
≤ 2nλ. Let Ω = ∪jQj, and Ω̃ = ∪j2Qj. Next, let

f = g + b, where g =
∑

j fQj
χQj

(x) + f(x)χΩc(x). Then

w{x ∈ Rn : |Tf(x)| > λ} ≤ w(Ω̃) + w{x ∈ (Ω̃)c : |Tb(x)| > λ/2}

+ w{x ∈ (Ω̃)c : |Tg(x)| > λ/2}.

For the first two terms we have the following estimate (see [12, p. 303])

w(Ω̃) + w{x ∈ (Ω̃)c : |Tb(x)| > λ/2} ≤ c

λ

∫
Rn

|f |Mwdx

≤ c‖w‖A1

λ

∫
Rn

|f |wdx.(3.7)

Now, by (3.4), for any p > 1 we have

w{x ∈ (Ω̃)c : |Tg(x)| > λ/2}

≤ c(νp)
p
( 1

r − 1

)p−1/r 1

λp

∫
Rn

|g|pMr(wχ(eΩ)c)dx

≤ c(νp)
p
( 1

r − 1

)p−1/r 1

λ

∫
Rn

|g|Mr(wχ(eΩ)c)dx.

Arguing exactly as in [12, p. 303], we obtain∫
Rn

|g|Mr(wχ(eΩ)c)dx ≤ c

∫
Rn

|f |Mrwdx.

Combining this estimate with the previous one, and then taking r = 1 + 1/2n+1‖w‖A1 , by

Lemma 3.1 we get

w{x ∈ (Ω̃)c : |Tg(x)| > λ/2} ≤ c(νp‖w‖A1)
p

λ

∫
Rn

|f |wdx.

Setting here p = 1 + 1
log(1+‖w‖A1

)
gives

w{x ∈ (Ω̃)c : |Tg(x)| > λ/2} ≤ cϕ(‖w‖A1)

λ

∫
Rn

|f |wdx.

This estimate combined with (3.7) completes the proof. �
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Sevilla, 41080 Sevilla, Spain

E-mail address: carlosperez@us.es


