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Abstract. We prove an extrapolation theorem saying that the
weighted weak type (1, 1) inequality for A1 weights implies the
strong Lp(w) bound in terms of the Lp(w) operator norm of the
maximal operator M . The weak Muchkenhoupt-Wheeden conjec-
ture along with this result allows us to conjecture that the following
estimate holds for a Calderón-Zygmund operator T for any p > 1:

∥T∥Lp(w) ≤ c∥M∥pLp(w).

The latter conjecture would yield the sharp estimates for ∥T∥Lp(w)

in terms of the Aq characteristic of w for any 1 < q < p. In this
paper we get a weaker inequality

∥T∥Lp(w) ≤ c∥M∥pLp(w) log(1 + ∥M∥Lp(w))

with the corresponding estimates for ∥w∥Aq
when 1 < q < p.

1. Introduction

In this paper we continue to study the sharp weighted inequalities
for singular integrals T in terms of the Ap characteristic of the weight:

∥w∥Ap ≡ sup
Q

(
1

|Q|

∫
Q

w dx

)(
1

|Q|

∫
Q

w− 1
p−1 dx

)p−1

(1 < p <∞).

For p = 1 we set

∥w∥A1 ≡ sup
x

Mw(x)

w(x)
,

where M is the Hardy-Littlewood maximal function.
The main conjecture concerning the behavior of T on Lp(w) says

that

(1.1) ∥T∥Lp(w) ≤ c(T, n, p)∥w∥
max
(
1, 1

p−1

)
Ap

(1 < p <∞).
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Currently this conjecture is proved by Petermichl for the Hilbert trans-
form [12] and Riesz transforms [13] and by Petermichl and Volberg for
the Ahlfors-Beurling operator [14]. The proofs in [12, 13, 14] are based
on the so-called Haar shift operators combined with the Bellman func-
tion technique. Recently, new approaches to these proofs have been
found in [3, 8].

We consider several questions related to conjecture (1.1), and which
are of independent interest. Suppose T is a general Calderón-Zygmund
operator (see Section 2 below for its precise definition). The first ques-
tion is about the sharp relation between the Lp(w) operator norms of
T and M . Observe that for any p > 1,

(1.2) ∥w∥Sp ≤ ∥M∥Lp(w) ≤ c(p, n)∥w∥Sp ,

where

∥w∥Sp = sup
Q

(∫
Q

(
M(σχQ)

)p
w∫

Q
σ

)1/p

(σ = w− 1
p−1 ).

The left-hand side of (1.2) is trivial, while the right-hand side is a recent
interesting result by Moen [11]. Its proof is based on a close examina-
tion of Sawyer’s two weighted characterization for M [16] applied to
the case of equal weights. Taking into account (1.2), our first question
can be interpreted as the question about the sharp estimates for T in
terms of the Sp characteristic of the weight.

Our second question is about the sharp estimates for T in terms of
the Aq characteristic of the weight for 1 < q < p. The case when
q = 1 was recently solved by Lerner, Ombrosi and Pérez in [10]: for
any Calderón-Zygmund operator T ,

(1.3) ∥T∥Lp(w) ≤ c(T, n)
p2

p− 1
∥w∥A1 (1 < p <∞).

Note that (1.3) in the case p ≥ 2 for classical convolution singular in-
tegrals was proved previously by Fefferman and Pipher [5] by means
of different methods. However, the main difficulty was in establish-
ing (1.3) for 1 < p < 2 with the sharp dependence both on ∥w∥A1 and
on p. Such estimates are motivated by the following so-called weak
Muckenhoupt-Wheeden conjecture:

(1.4) ∥Tf∥L1,∞(w) ≤ c(T, n)∥w∥A1∥f∥L1(w).

Observe that the question whether (1.4) holds is still open even for
the Hilbert transform. Using (1.3), it was shown in [10] that for any
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Calderón-Zygmund operator T ,

(1.5) ∥Tf∥L1,∞(w) ≤ c(T, n)∥w∥A1 log(1 + ∥w∥A1)∥f∥L1(w).

As we shall see below, both our questions could be solved under the
assumption that the weak Muckenhoupt-Wheeden conjecture is true.
This follows from the next theorem, which is the main result of this
paper.

Theorem 1.1. Let T be a linear operator satisfying

(1.6) ∥T ∗f∥L1,∞(w) ≤ c(T, n)φ(∥w∥A1)∥f∥L1(w),

where T ∗ is a formal adjoint of T , and φ is a non-decreasing function
on [1,∞) such that φ(2t) ≤ cφ(t) for t ≥ 1. Then for any 1 < p <∞,

∥T∥Lp(w) ≤ c(T, n, p)∥M∥p−1
Lp(w)φ(∥M∥Lp(w)).

Since for a given Calderón-Zygmund operator T , its adjoint is also a
Calderón-Zygmund operator, the weak Muckenhoupt-Wheeden conjec-
ture (1.4) along with Theorem 1.1 immediately leads to the following.

Conjecture 1.2. Let T be a Calderón-Zygmund operator. Then

(1.7) ∥T∥Lp(w) ≤ c(T, n, p)∥M∥pLp(w) (1 < p <∞).

As it was observed by Buckley (see [1, Remark 2.8]), ∥M∥Lp(w) ≤
c∥w∥1/pAq

for q < p (when q = 1 this follows from the Fefferman-Stein

inequality [4]). This along with (1.7) leads to the following.

Conjecture 1.3. Let T be a Calderón-Zygmund operator. Then

(1.8) ∥T∥Lp(w) ≤ c(T, n, p, q)∥w∥Aq (1 < q < p <∞).

Since ∥w∥Aq ≤ ∥w∥A1 , and (1.3) is best possible in terms of ∥w∥A1 ,
we clearly have that (1.8) is best possible with respect to ∥w∥Aq and
the exponent p on the right-hand side of (1.7) is sharp.

Note that (1.1) in the case p ≥ 2 implies Conjecture 1.3. There-
fore, in this case we have that (1.8) holds for the Hilbert, Riesz and
Ahlfors-Beurling transforms. However, in the case 1 < q < p < 2
Conjecture 1.3 is open even for the Hilbert transform.

By the same reasons as above, inequality (1.5) combined with Theo-
rem 1.1 yields the following particular results related to our questions
and to Conjectures 1.2 and 1.3.

Theorem 1.4. Let T be a Calderón-Zygmund operator. Then

∥T∥Lp(w) ≤ c(T, n, p)∥M∥pLp(w) log(1 + ∥M∥Lp(w)) (1 < p <∞)

and

∥T∥Lp(w) ≤ c(T, n, p, q)∥w∥Aq log(1 + ∥w∥Aq) (1 < q < p <∞).
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Some words about the proof of Theorem 1.1. Suppose that we
use (1.6) directly with T instead of T ∗. Then, by the Rubio de Francia
extrapolation argument, this implies

(1.9) ∥Tf∥Lp,∞(w) ≤ c(T, n, p)φ(∥M∥Lp′ (σ))∥f∥Lp(w) (1 < p <∞).

Now, the standard approach to (1.9) is based on Buckley’s work [1].
First, by [1], ∥M∥Lp′ (σ) ≤ c∥w∥Ap . Second, as in [1], applying (1.9) with

∥w∥Ap on the right-hand side to p − ε and p + ε, where ε = c∥w∥1−p′

Ap
,

and using that ∥w∥Ap−ε ≤ c∥w∥Ap along with the Marcinkiewicz inter-
polation theorem, we obtain

∥T∥Lp(w) ≤ c(T, n, p)∥w∥
1

p(p−1)

Ap
φ(∥w∥Ap).

However, it is easy to see that if, for example, φ(t) = t, the latter
estimate does not yield (1.8).

In our approach we do not pass to ∥w∥Ap in (1.9). Instead of this,

we apply (1.9) to p− ε and p + ε but with ε = c∥M∥−p′

Lp′ (σ)
. The most

complicated part of the proof was to show that for such a choice of ε we
have properties similar to ∥w∥Ap−ε ≤ c∥w∥Ap but for the corresponding

L(p−ε)′(σ) and L(p+ε)′(σ) operator norms of M . Here we use essentially
Moen’s recent estimate (1.2) along with several other ingredients. We
get

∥T∥Lp(w) ≤ c(T, p, n)∥M∥p
′/p

Lp′ (σ)
φ(∥M∥Lp′ (σ)).

In order to have the same operator norms on both sides of this inequal-
ity, we use the initial assumption (1.6) with T ∗ along with the dual
relation ∥T∥Lp′ (σ) = ∥T ∗∥Lp(w). Finally, replacing p′ by p and σ by w,
we obtain the desired inequality.

The paper is organized as follows. Section 2 contains some pre-
liminaries along with the standard ingredients used in the proof. In
Section 3 we prove Theorem 1.1.

2. Preliminaries

Throughout the paper we use the standard notations: p′ = p
p−1

, σ =

w− 1
p−1 , wQ = 1

|Q|

∫
Q
w dx and w(Q) =

∫
Q
w dx.

By a Calderón-Zygmund operator we mean a continuous linear op-
erator T : C∞

0 (Rn) → D′(Rn) that extends to a bounded operator on
L2(Rn), and whose distributional kernel K coincides away from the di-
agonal x = y in Rn×Rn with a function K satisfying the size estimate

|K(x, y)| ≤ c

|x− y|n
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and the regularity condition: for some ε > 0,

|K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ c
|x− z|ε

|x− y|n+ε
,

whenever 2|x− z| < |x− y|, and so that

Tf(x) =

∫
Rn

K(x, y)f(y)dy,

whenever f ∈ C∞
0 (Rn) and x ̸∈ supp(f).

Recall that the Hardy-Littlewood maximal operatorM is defined by

Mf(x) = sup
Q∋x

1

|Q|

∫
Q

|f(y)|dy,

where the supremum is taken over all cubes Q containing the point x.
We shall need the following particular case of the Marcinkiewicz

interpolation theorem (see, e.g., [6, p. 31]).

Lemma 2.1. Let T be a sublinear operator such that

∥Tf∥Lp−ε,∞(w) ≤ A∥f∥Lp−ε(w) for all f ∈ Lp−ε(w),

where 0 < ε < p, and

∥Tf∥Lp+ε,∞(w) ≤ A∥f∥Lp+ε(w) for all f ∈ Lp+ε(w).

Then for any f ∈ Lp(w) we have

∥Tf∥Lp(w) ≤ 2(2p)1/p
A

ε1/p
∥f∥Lp(w).

The proof of the next statement is well known, and we give it for the
sake of completeness.

Lemma 2.2. Let f and g be measurable functions such that for any
w ∈ A1,

∥f∥L1,∞(w) ≤ φ(∥w∥A1)∥g∥L1(w).

Then for any 1 < p <∞ and for all w ∈ Ap,

∥f∥Lp,∞(w) ≤ 2cφ
(
∥M∥Lp′ (σ)

)
∥g∥Lp(w),

where c is the doubling constant of φ: c = sup
t≥1

φ(2t)/φ(t).

Proof. Given ψ ≥ 0 with ∥ψ∥Lp′ (σ) = 1, following Rubio de Francia’s

method [15], set

Rψ(x) =
∞∑
k=0

Mkψ(x)

(2∥M∥Lp′ (σ))
k
.
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Then ψ(x) ≤ Rψ(x), ∥Rψ∥Lp′ (σ) ≤ 2, and Rψ ∈ A1 with

∥Rψ∥A1 ≤ 2∥M∥Lp′ (σ).

Therefore,

λ

∫
{|f |>λ}

ψ ≤ λ

∫
{|f |>λ}

Rψ ≤ φ(∥Rψ∥A1)

∫
Rn

|g|Rψ dx

≤ cφ
(
∥M∥Lp′ (σ)

)
∥g∥Lp(w)∥Rψ∥Lp′ (σ)

≤ 2cφ
(
∥M∥Lp′ (σ)

)
∥g∥Lp(w).

Taking the supremum over all ψ ≥ 0 with ∥ψ∥Lp′ (σ) = 1 completes the
proof. �

It is a classical result that the Ap weight satisfies the reverse Hölder
inequality (see, e.g., [2]). We will use the following version of this result.

Lemma 2.3. If w ∈ Ap and δ = 1
2n+2∥M∥

Lp′ (σ)

, then for any cube Q,

( 1

|Q|

∫
Q

w1+δ dx
) 1

1+δ ≤ 2
1

|Q|

∫
Q

w dx.

Proof. Let Md
Q denote the dyadic maximal operator restricted to a

cube Q. It was shown in the proving of [9, Lemma 3.1] that

(2.1)

∫
Q

(Md
Qw)

δw dx ≤ (wQ)
δ

∫
Q

w dx+
2nδ

δ + 1

∫
Q

(Md
Qw)

1+δ dx.

Next, by Hölder’s inequality,∫
Q

(Md
Qw)

1+δ dx =

∫
Q

(Md
Qw)

δ/pw1/p(Md
Qw)

1+δ/p′w−1/p dx

≤
(∫

Q

(Md
Qw)

δw dx
)1/p(∫

Q

(Md
Qw)

p′+δσ dx
)1/p′

≤ ∥M∥1+δ/p′

Lp′+δ(σ)

(∫
Q

w1+δ dx
)1/p′(∫

Q

(Md
Qw)

δw dx
)1/p

≤ ∥M∥1+δ/p′

Lp′ (σ)

∫
Q

(Md
Qw)

δw dx

(we have used here an obvious fact that ∥M∥Lp1 (µ) ≤ ∥M∥Lp2 (µ) if
p1 ≥ p2). Combining this with (2.1) yields∫

Q

(Md
Qw)

δw dx ≤ (wQ)
δ

∫
Q

w dx+
2nδ

δ + 1
∥M∥1+δ/p′

Lp′ (σ)

∫
Q

(Md
Qw)

δw dx.
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Letting δ = 1
2n+2∥M∥

Lp′ (σ)

, we get

2nδ

δ + 1
∥M∥1+δ/p′

Lp′ (σ)
≤ 1

4
∥M∥

1
2n+2p′∥M∥

Lp′ (σ)

Lp′ (σ)
≤ 1

4
e

1
2n+2p′e ≤ 1

2
.

This along with the previous inequality implies∫
Q

(Md
Qw)

δw dx ≤ 2(wQ)
δ

∫
Q

w dx,

which, by Lebesgue’s differentiation theorem, completes the proof. �
Remark 2.4. Lemma 2.3 can be restated in a dual form as follows: if
w ∈ Ap and δ = 1

2n+2∥M∥Lp(w)
, then for any cube Q,( 1

|Q|

∫
Q

σ1+δ dx
) 1

1+δ ≤ 2
1

|Q|

∫
Q

σ dx.

Lemma 2.5. For any w ∈ Ap,

(2.2) ∥w∥
1
p

Ap
≤ ∥M∥Lp(w) ≤ c(n, p)∥w∥

1
p−1

Ap
.

The right-hand side of (2.2) was proved by Buckley [1]. The left-hand
side follows easily from Mf ≥ ( 1

|Q|

∫
Q
|f |)χQ applied to f = σχQ.

3. Proof of the main result

The key ingredient in our proof is the following lemma.

Lemma 3.1. Let ν ∈ Ar and ε = r−1
c(n,r)(1+2n+2)

1

∥M∥r′
Lr′ (νr)

, where c(n, r)

is the constant from (2.2) and νr = ν−
1

r−1 . Then

(3.1) ∥M∥
L(r+ε)′

(
ν
− 1

r+ε−1

) ≤ c1(n, r)∥M∥Lr′ (νr)

and

(3.2) ∥M∥
L(r−ε)′

(
ν
− 1

r−ε−1

) ≤ c2(n, r)∥M∥Lr′ (νr)
.

Before proving the lemma, let us show how the proof of Theorem 1.1
follows.

Proof of Theorem 1.1. Take ε as in Lemma 3.1 and apply Lemma 2.2
with p = r − ε and p = r + ε. Using (3.1) and (3.2), we get

∥T ∗f∥Lr−ε,∞(ν) ≤ cφ
(
∥M∥

L(r−ε)′
(
ν
− 1

r−ε−1

))∥f∥Lr−ε(ν)

≤ cφ(∥M∥Lr′ (νr)
)∥f∥Lr−ε(ν)
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and

∥T ∗f∥Lr+ε,∞(ν) ≤ cφ
(
∥M∥

L(r+ε)′
(
ν
− 1

r+ε−1

))∥f∥Lr+ε(ν)

≤ cφ(∥M∥Lr′ (νr)
)∥f∥Lr+ε(ν).

From this and from Lemma 2.1,

∥T∥Lr′ (νr)
= ∥T ∗∥Lr(ν) ≤ c∥M∥r

′/r

Lr′ (νr)
φ(∥M∥Lr′ (νr)

).

Taking here r = p′ and ν = w− 1
p−1 completes the proof. �

We turn now to the proof of Lemma 3.1.

Proof of (3.1). By Moen’s estimate (1.2),

∥M∥
L(r+ε)′

(
ν
− 1

r+ε−1

) ≤ c sup
Q

(∫
Q
M(νχQ)

(r+ε)′ν−
1

r+ε−1 dx

ν(Q)

)1/(r+ε)′

.

Further, by Hölder’s inequality and by Lemma 2.3,

1

|Q|

∫
Q

M(νχQ)
(r+ε)′ν−

1
r+ε−1 dx ≤

(
1

|Q|

∫
Q

M(νχQ)
r+ε
r−1νr dx

) r−1
r+ε−1

≤ ∥M∥(r+ε)′

L
r+ε
r−1 (νr)

(
1

|Q|

∫
Q

ν1+ε/(r−1) dx

) 1
1+ε/(r−1)

≤ 2∥M∥(r+ε)′

Lr′ (νr)

1

|Q|

∫
Q

ν dx.

Combining this with the previous estimate gives (3.1) �

It turns out that the proof of (3.2) is more complicated. We shall
need the following covering lemma.

Lemma 3.2. Let f be a non-negative integrable function on a cube Q.
Assume that fQ < λ and Ωλ = {x ∈ Q :M(fχQ)(x) > λ} is not empty.
Then there exists a sequence {Qj} of cubes such that (fχQ)Qj

= λ/2n

and

(i) Ωλ ⊂
Bn∪
k=1

∪
j∈Fk

Qj, where each of the family {Qj}j∈Fk
is formed

by pairwise disjoint cubes and a constant Bn depends only on n;
(ii) the ratio of any two sidelengths of rectangles Q∩Qj is bounded

by 2;
(iii) for any j, |Qj| ≤ 2n|Q ∩Qj|.
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Proof. Let x ∈ Q and Q′ be an arbitrary cube centered at x and such
that ℓ(Q′) < 2ℓ(Q), where ℓ(Q) denotes the sidelength of Q. It is a
simple geometric observation that Q′∩Q is a rectangle where the ratio
of any two sidelengths is bounded by 2 and |Q′| ≤ 2n|Q′ ∩Q|.

Further, sinceMf(x) ≤ 2nM cf(x), whereM cf is the centered maxi-
mal function, we have that if x ∈ Ωλ, thenM

c(fχQ)(x) > λ/2n. Hence,
there exists a cube Q′ centered at x such that (fχQ)Q′ > λ/2n. Setting
ψ(r) = (fχQ)Q(x,r), where Q(x, r) denotes the cube centered at x with
sidelength equal to r, we have that ψ(r) is a continuous function and
ψ(r) ≤ fQ/2

n < λ/2n for r ≥ 2ℓ(Q). Therefore, there exists r′ = r′(x)
such that 0 < r′ < 2ℓ(Q) and (fχQ)Q(x,r′) = λ/2n.

Applying to the family ∪x∈Ωλ
{Q(x, r′(x))} the Besicovitch covering

theorem [7], we get the required sequence of cubes {Qj}. �

Lemma 3.3. Let P be a rectangle satisfying property (ii) of Lemma 3.2,
and let f ∈ L(P ). Then there exists a cube Q ⊂ P such that |P | ≤
2n|Q| and

(3.3)

∫
P

|f | dx ≤ 2n
∫
Q

|f | dx.

Proof. Subdividing each side of P into two equal parts, we get 2n pair-
wise disjoint rectangles Pk ⊂ P such that P = ∪2n

k=1Pk and |Pk| =
|P |/2n. Hence, there is k0 such that

∫
P

|f | dx ≤ 2n
∫
Pk0

|f | dx.

Since P satisfies property (ii), we get that the biggest side of Pk0 is less
or equal than the smallest side of P . Therefore, there is a cube Q such
that Pk0 ⊂ Q ⊂ P . From this we have (3.3). Also, |P | = 2n|Pk| ≤
2n|Q|, and hence the proof is complete. �

Proof of (3.2). First, using again (1.2), we get

∥M∥
L(r−ε)′

(
ν
− 1

r−ε−1

) ≤ c sup
Q

(∫
Q
M(νχQ)

(r−ε)′ν−
1

r−ε−1 dx

ν(Q)

)1/(r−ε)′

.
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Fix a cube Q and set Ωλ = {x ∈ Q :M(νχQ)(x) > λ}. Write∫
Q

M(νχQ)
(r−ε)′ν−

1
r−ε−1 dx

= (r − ε)′
∫ νQ

0

λ(r−ε)′−1

∫
Ωλ

ν−
1

r−ε−1 dxdλ

+(r − ε)′
∫ ∞

νQ

λ(r−ε)′−1

∫
Ωλ

ν−
1

r−ε−1 dxdλ ≡ I1 + I2.

In order to estimate I1, we use a simple argument. It is easy to see
that

I1 ≤ (νQ)
(r−ε)′

∫
Q

ν−
1

r−ε−1 dx = (νQ)
(r−ε)′

∫
Q

(νr)
1+ ε

r−ε−1 dx

Further, by Lemma 2.5,

(3.4) ∥M∥r′
Lr′ (νr)

≥ ∥νr∥Ar′
= ∥ν∥

1
r−1

Ar
≥ 1

c(n, r)
∥M∥Lr(ν),

and hence,
ε

r − ε− 1
≤ 1

2n+2∥M∥Lr(ν)

.

Therefore, by Remark 2.4 and by the left-hand side of (3.4) we obtain

I1 ≤ 3|Q|(νQ)(r−ε)′
(

1

|Q|

∫
Q

νr dx

) r−1
r−1−ε

= 3|Q|νQ
(
νQ

( 1

|Q|

∫
Q

νr dx
)r−1

) 1
r−1−ε

≤ 3ν(Q)∥ν∥
1

r−1−ε

Ar
≤ 3ν(Q)∥M∥

r
r−1−ε

Lr′ (νr)
.

Now we estimate I2. We are going to prove that for any λ > νQ,

(3.5)

∫
Ωλ

ν−
1

r−ε−1 dx ≤ c(r, n)
(1
λ

) ε
(r−1)(r−ε−1)

∫
Ωλ/2n

νr dx.

Assuming for a moment (3.5) to be true, let us show how to finish
the proof of (3.2). Using (3.5), we get

I2 ≤ c

∫ ∞

0

λ
1

r−ε−1
− ε

(r−1)(r−ε−1)

∫
Ωλ/2n

νr dxdλ

≤ c

∫ ∞

0

λr
′−1

∫
Ωλ

νr dxdλ

≤ c

∫
Q

M(νχQ)
r′νr dx ≤ cν(Q)∥M∥r′

Lr′ (νr)
.
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Combining the estimates for I1 and I2 yields

I1 + I2 ≤ cν(Q)∥M∥
r

r−1−ε

Lr′ (νr)
,

and thus,

(∫
Q
M(νχQ)

(r−ε)′ν−
1

r−ε−1 dx

ν(Q)

)1/(r−ε)′

≤ c∥M∥1+
ε

r−ε

Lr′ (νr)
.

But since ∥M∥Lr′ (νr)
≥ 1, we easily have that

∥M∥
ε

r−ε

Lr′ (νr)
≤ ∥M∥

c∥M∥−r′

Lr′ (νr)

Lr′ (νr)
≤ c,

which combined with the previous estimate completes the proof of (3.2).
It remains to prove (3.5). Let λ > νQ. Applying Lemma 3.2 to the

set Ωλ, we get a sequence of cubes {Qj} satisfying properties (i)–(iii)
of the lemma and such that (νχQ)Qj

= λ/2n. Set Pj = Q ∩ Qj. By

Lemma 3.3 choose a cube Q̃j corresponding to Pj and f = ν−
1

r−ε−1 .
Using (3.3) and arguing exactly as in the above argument for I1, we
get ∫

Pj

ν−
1

r−ε−1 =

∫
Pj

(νr)
1+ ε

r−ε−1 ≤ 2n
∫
Q̃j

(νr)
1+ ε

r−ε−1(3.6)

≤ 3 · 2n|Q̃j|

(
1

|Q̃j|

∫
Q̃j

νr dx

)1+ ε
r−ε−1

= 3 · 2nνr(Q̃j)

(
1

|Q̃j|

∫
Q̃j

νr dx

) ε
r−ε−1

.

Next, observe that by (iii) of Lemma 3.2 and by Lemma 3.3,

|Qj| ≤ 2n|Pj| ≤ 4n|Q̃j|.

Also, by the left-hand side of (3.4),

ε ≤ c∥ν∥−
1

r−1

Ar
.
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Using these estimates and the fact that ∥ν∥Ar ≥ 1, we get(
(νr)Q̃j

) ε
r−ε−1 = (2n/λ)

ε
(r−1)(r−ε−1)

(
(νχQ)Qj

) ε
(r−1)(r−ε−1)

(
(νr)Q̃j

) ε
r−ε−1

≤ c
(1
λ
(νQj

)
(
(νr)Qj

)r−1
) ε

(r−1)(r−ε−1)

≤ c
(1
λ
∥ν∥Ar

) ε
(r−1)(r−ε−1) ≤ c

(1
λ

) ε
(r−1)(r−ε−1)∥ν∥c∥ν∥

− 1
r−1

Ar
Ar

≤ c
(1
λ

) ε
(r−1)(r−ε−1)

,

where the constant c depends only on n and r. Combining this with (3.6)
yields

(3.7)

∫
Pj

ν−
1

r−ε−1 ≤ cνr(Q̃j)
(1
λ

) ε
(r−1)(r−ε−1)

.

Since Q̃j ⊂ Qj, we have that M(νχQ)(x) ≥ λ/2n for any x ∈ Q̃j.

Also, for each k, 1 ≤ k ≤ Bn the cubes {Q̃j}j∈Fk
are pairwise disjoint.

From this and from (3.7),∑
j∈Fk

∫
Pj

ν−
1

r−ε−1 dx ≤ c
(1
λ

) ε
(r−1)(r−ε−1)

∫
Ωλ/2n

νr dx.

Therefore,∫
Ωλ

ν−
1

r−ε−1 dx ≤
Bn∑
k=1

∑
j∈Fk

∫
Pj

ν−
1

r−ε−1 dx

≤ cBn

(1
λ

) ε
(r−1)(r−ε−1)

∫
Ωλ/2n

νr dx.

We have proved (3.5), and therefore the proof is complete. �
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