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Abstract. We consider maximal operators MB with respect to
a basis B. In the case when MB satisfies a reversed weak type
inequality, we obtain a boundedness criterion for MB on an arbi-
trary quasi-Banach function space X. Being applied to specific
B and X this criterion yields new and short proofs of a number
of well-known results. Our principal application is related to an
open problem on the boundedness of the two-dimensional one-sided
maximal function M+ on Lp

w.

1. Introduction

For any point x ∈ Rn denote by B(x) a family of bounded measurable
sets of positive measure. The unified collection B = ∪x∈RnB(x) is called
a basis (see [8] and also [9] for a somewhat different definition). For
a locally integrable function f on Rn the Hardy-Littlewood maximal
operator associated with B is defined by

MBf(x) = sup
B∈B(x)

1

|B|

∫
B

|f(y)|dy.

The basis formed by all cubes Q containing x with sides parallel to the
axes we denote by Q. If x = (x1, . . . , xn) and B(x) = {

∏n
i=1(xi, xi +

h)}h>0, the corresponding basis is denoted by Q+. The maximal opera-
tors associated withQ andQ+ are denoted by M and M+, respectively.

The Hardy-Littlewood maximal operator in its various forms plays a
fundamental role in Harmonic Analysis, and its different aspects have
been studied in a great number of papers. The most typical problem
of interest can be described briefly as follows: given a function space
X and a basis B, find a necessary and sufficient condition yielding the
boundedness of MB on X.
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Let MB,rf = (MB|f |r)1/r. By Hölder’s inequality, MB,rf ≤ MB,sf
if r < s. In a recent paper [13], the authors established that M is
bounded on a quasi-Banach function space X iff Mr is bounded on X
for some r > 1. For many particular spaces X this self-improving
phenomenon was observed before but each case required its own proof.
In this paper we complement this result by extending it to a wide class
of B and by obtaining a similar characterization in terms of MB,r for
r < 1. The case r > 1 in [13] was treated by means of the concept of
generalized Boyd indices. Here we give a unified and simple approach
to both cases r > 1 and r < 1 using the well-known Rubio de Francia
algorithm.

The following definition expresses the relevant property of a basis
needed for our purposes. In the case when B = Q it was obtained by
E.M. Stein [23].

Definition 1.1. We say that a basis B satisfies the Stein property
if there exists a constant c > 0 such that for any f ∈ L1

loc(Rn) and
x ∈ Rn, for all B ∈ B(x) and λ > MBf(x) we have

(1.1)

∫
{y∈B:|f(y)|>λ}

|f(y)|dy ≤ cλ|{y ∈ B : MBf(y) > λ}|.

One of our main results is the following.

Theorem 1.2. Let X(Rn) be an arbitrary quasi-Banach function space.
Suppose B satisfies Stein’s property. Then the following conditions are
equivalent:

(i) lim
ε→0

ε‖MB,1−ε‖X = 0;

(ii) MB is bounded on X;
(iii) MB,r is bounded on X for some r > 1.

In order to feel the theorem better, let us consider the case when X
is the weighted Lebesgue space Lp

w, where a weight w is supposed to
be a non-negative locally integrable function. First of all, we have the
following.

Corollary 1.3. Let B satisfy Stein’s property, and let 1 < p < ∞. If
MB maps Lp

w into Lp,∞
w , then MB actually maps Lp

w into Lp
w.

Indeed, if MB : Lp
w → Lp,∞

w , then by the Marcinkiewicz interpolation
theorem (see, e.g., [5, p. 29]), ‖MB‖Lq

w
≤ c(q−p)−1/q for q > p. Taking

q = p
1−ε

, we get ‖MB,1−ε‖Lp
w
≤ cε−1/p. It remains to apply (i) ⇒ (ii).

Corollary 1.3 shows that in the case when B satisfies Stein’s prop-
erty, the weak type (p, p) (with respect to w) of MB is equivalent to the
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strong type (p, p) for p > 1. However, the weak type (p, p) property is
usually much easier to prove. Consider, for example, the classical max-
imal operator M . We recall that a weight w satisfies the Ap condition
if there exists c > 0 such that for any cube Q,( ∫

Q

w
)( ∫

Q

w−1/(p−1)
)p−1

≤ c|Q|p.

By a fundamental theorem of B. Muckenhoupt [17] (see also [4]), M is
bounded on Lp

w iff w ∈ Ap. The first proofs of this result [4, 17]
depended on a deep property of Ap weights saying that the Ap con-
dition implies Ap−ε for some ε > 0. Later, other proofs (see, e.g.,
[9]), avoiding this property, were found. We now observe that Theo-
rem 1.2 implies easily both Muckenhoupt’s theorem and the implication
Ap ⇒ Ap−ε. Indeed, Hölder’s inequality along with the Ap condition
yields Mf(x)p ≤ cMw(|f |p)(x) (Mw is the weighted maximal operator),
and since any Ap weight is doubling, by a classical covering argument
we get the weighted weak type (p, p) of M . This, by Corollary 1.3,
proves Muckenhoupt’s theorem (only the sufficiency part in this theo-
rem is non-trivial). Next, we clearly have that Mr : Lp

w → Lp
w for some

r > 1 iff M : Lp−ε
w → Lp−ε

w for some ε > 0. Therefore, by (ii) ⇒ (iii) of
Theorem 1.2 we get Ap ⇒ Ap−ε.

Consider now the maximal operator M+. Given a cube Q =
∏n

i=1(ai−
h, ai), set Q+ =

∏n
i=1(ai, ai + h). We say that a weight w satisfies the

A+
p condition if there exists c > 0 such that for any cube Q,( ∫

Q

w
)( ∫

Q+

w−1/(p−1)
)p−1

≤ c|Q|p.

Only fourteen years after Muckenhoupt’s result E. Sawyer [21] proved
that in the one-dimensional case M+ is bounded on Lp

w iff w ∈ A+
p .

The proof in [21] was based on certain Hardy-type inequalities. Later,
F.J. Mart́ın-Reyes [14] found another proof in spirit of the classical case
of M . Namely, first an equivalence of A+

p and the weak-type (p, p) of
M+ was established (which was done in a simple and clever way), and
then the property A+

p ⇒ A+
p−ε was proved. Observe that in Sawyer’s

work [21] it was already mentioned that the basis Q+ in the case n = 1
satisfies Stein’s property. Therefore, using only the weak-type (p, p) of
M+ we have, exactly as above, both Sawyer’s theorem and the property
A+

p ⇒ A+
p−ε.

It turns out that the case n ≥ 2 in the study of M+ is much more
complicated. In fact, the question whether the full analogue of Sawyer’s
theorem holds when n ≥ 2 is still open. Only in a recent paper [7], the
authors overcame considerable technical difficulties and proved that
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in the case n = 2 the A+
p condition is equivalent to the weak type

(p, p) property of M+. Observe that a dyadic variant of this result was
recently obtained in [19] in any dimension. However, the usual, non-
dyadic case requires much more delicate analysis, and it is unknown
for us whether the covering argument found in [7] in the case n = 2
can be extended to n ≥ 3.

Once an equivalence between the weak type (p, p) of M+ and the
A+

p condition is established, it is natural to ask whether the basis
Q+, n = 2, satisfies Stein’s property, as in the one-dimensional case.
Unfortunately, this is not true as the following example shows.

Example 1.4. Let n = 2. Then Q+ does not satisfy Stein’s property.

Let Q0 = (0, 1)2 and fε = 1
ε2 χ(0,ε)×(1−ε,1) for small ε. It is easy to

see that M+fε(0) = 1 and {y ∈ Q0 : M+fε(y) > λ} ⊂ (0, ε) × (0, 1).
Hence, setting in (1.1) f = fε and B = Q0, for any fixed λ such that
1 < λ < 1

ε2 we get that the left-hand side of (1.1) is equal to 1, while
the right-hand side is bounded by cλε.

Roughly speaking, Theorem 1.2 contains implicitly a large part of
standard technique needed to work with “good” maximal operators.
The above example shows that this technique falls down when we deal
with M+ in the multi-dimensional case. Nevertheless, some indirect
variants of ideas used in proving Theorem 1.2 combined with the above
mentioned weak type result for M+ proved in [7] allows us to get a
strong type result for a family of maximal operators closely related
to M+. This family is defined as follows. Given x = (x1, x2) and
r ∈ [0, 1), let Qr

x,h =
∏2

i=1(xi + rh, xi + h). For f ∈ L1
loc(R2) define the

maximal operator N+
r by

N+
r f(x) = sup

h>0

1

|Qr
x,h|

∫
Qr

x,h

|f(y)|dy.

Observe that N+
0 f = M+f and N+

r2
f ≤ cN+

r1
f for 0 ≤ r1 < r2 < 1.

The second main result of this paper is the following.

Theorem 1.5. Let 1 < p < ∞. If w ∈ A+
p (R2), then

‖N+
r f‖Lp

w
≤ c‖f‖Lp

w
(0 < r < 1),

where the constant c depends only on w, p and r.

It is easy to show that in the one-dimensional case N+
r f is equivalent

to M+f (see, e.g., [16, Prop. 2.4]), and this is not true in general when
n ≥ 2. Hence, Theorem 1.5 can be regarded as an extension of Sawyer’s
theorem to the case n = 2. Notice that the main question whether the
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A+
p (R2) condition is sufficient for the boundedness of M+ on Lp

w(R2)
remains open. However, Theorem 1.5 shows that this really holds for
an arbitrary big portion of M+. This gives an additional indication
that an answer to the above question should be positive.

The paper is organized as follows. Section 2 contains the proof of
Theorem 1.2. Theorem 1.5 is proved in Section 3. Finally, in Section 4
we consider some other applications of Theorem 1.2.

Acknowledgement. This work was done during our stay at the Uni-
versity of Seville. We would like to thank Carlos Pérez for his hospi-
tality.

2. Proof of Theorem 1.2

For the definition of Banach function norm we refer to [2, p. 2].
If the triangle inequality in this definition is replaced by ‖f + g‖ ≤
c(‖f‖ + ‖g‖) for some c ≥ 1, we get a quasi-norm. A complete quasi-
normed space is called a quasi-Banach space. We shall use the following
version of the Aoki-Rolewicz theorem (see, e.g., [11, p. 3]) saying that
for a quasi-Banach space X,

(2.1)
∥∥∥ ∞∑

k=0

fk

∥∥∥
X
≤ 41/ρ

( ∞∑
k=0

‖fk‖ρ
X

)1/ρ

,

where 0 < ρ ≤ 1 is given by c = 21/ρ−1 (c is the “quasi-norm” constant).
We say that a weight w satisfies the A1(B) condition if there exists

c > 0 such that

(2.2) MBw(x) ≤ cw(x) a.e.

The smallest possible c in (2.2) is denoted by ‖w‖A1(B).

Lemma 2.1. Suppose B satisfies Stein’s property. If w ∈ A1(B), then

(2.3) MB,rw(x) ≤ 2‖w‖A1(B)w(x) a.e.,

where r = 1 + ξ
‖w‖A1(B)

, and ξ depends only on the constant c from

Definition 1.1.

Remark 2.2. When B = Q this lemma was used in a recent paper [12]
in order to get some sharp weighted inequalities for singular integrals.
Note that actually the lemma is contained implicitly in [4, 9] but the
dependence of r on ‖w‖A1(B) is not written there explicitly. Since this
point will be important for us, we give a complete proof of the lemma,
although the case of general B is treated exactly as Q.
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Proof of Lemma 2.1. Given B ∈ B(x), set E(B) = {y ∈ B : w(y) >
MBw(x)}. Using Stein’s property and Fubini’s theorem, we have∫

E(B)

w1+δdy = δ

∫ ∞

MBw(x)

λδ−1

∫
{y∈B:w(y)>λ}

w(y)dydλ

≤ cδ

∫ ∞

MBw(x)

λδ|{y ∈ B : MBw(y) > λ}|dλ

≤ cδ

1 + δ

∫
B

(MBw)1+δdy ≤
cδ‖w‖1+δ

A1(B)

1 + δ

∫
B

w1+δdy.

Therefore,∫
B

w1+δdy =

∫
E(B)

w1+δdy +

∫
B\E(B)

w1+δdy

≤
cδ‖w‖1+δ

A1(B)

1 + δ

∫
B

w1+δdy + |B|MBw(x)1+δ.

Setting δ = 1
3max(c,1)

1
‖w‖A1(B)

, we get
cδ‖w‖1+δ

A1(B)

1+δ
≤ 1

3
e1/3e ≤ 1

2
, and thus

1

|B|

∫
B

w1+δdy ≤ 2MBw(x)1+δ.

This proves the lemma with r = 1 + δ. �

Proof of Theorem 1.2. Following the Rubio de Francia idea [20], for
0 < ε < 1 set

Rεf(x) =
∞∑

k=0

εkMk
Bf(x),

where Mk
B is the operator MB iterated k times and M0

Bf = |f |. Note
that Rεf(x) ∈ A1(B) with ‖Rεf‖A1(B) ≤ 1

ε
. Also we trivially have |f | ≤

Rεf . Therefore, setting w(x) = Rεf(x) in (2.3) and using Hölder’s
inequality, we get

(2.4) MB,1+ξεf(x) ≤ 2

ε
Rεf(x) (0 < ε < 1).

Observe that only two implications in Theorem 1.2 are non-trivial,
namely, (i) ⇒ (ii) and (ii) ⇒ (iii). To prove the last implication, we
apply (2.1) and (2.4) with ε < 1/‖MB‖X . Then

‖MB,1+ξεf‖X ≤ 2

ε
‖Rεf‖X ≤ 2

ε
41/ρ

( ∞∑
k=0

(εk‖Mk
Bf‖X)ρ

)1/ρ

≤ 2

ε
41/ρ

( ∞∑
k=0

(ε‖MB‖X)ρk
)1/ρ

‖f‖X ,
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and thus we have (iii) with r = 1 + ξε.
The proof of (i) ⇒ (ii) is similar. Given ε > 0, set νε = 1 + ξε.

Using (i), fix an ε > 0 such that ε‖MB,1/νε‖X < 1. Denote by Xε the
quasi-Banach space with norm

‖f‖Xε = ‖|f |νε‖
1

νε
X .

Rewriting (2.4) as

MBf(x) ≤
(2

ε
Rε(|f |

1
νε )(x)

)νε

and applying (2.1) to X = Xε (with the corresponding constant ρ =
ρε), we get

‖MBf‖X ≤ (2/ε)νε‖Rε(|f |
1

νε )‖νε
Xε

≤ (2/ε)νε4νε/ρε

( ∞∑
k=0

(εk‖Mk
B(|f |

1
νε )‖Xε)

ρε

)νε/ρε

= (2/ε)νε4νε/ρε

( ∞∑
k=0

ερεk‖Mk
B,1/νε

f‖ρε/νε

X

)νε/ρε

≤ (2/ε)νε4νε/ρε

( ∞∑
k=0

(ε‖MB,1/νε‖X)ρεk
)νε/ρε

‖f‖X .

We have obtained (ii), and therefore the theorem is proved. �

3. Proof of Theorem 1.5

We first introduce some notation. Given a square Q = (a, a + h) ×
(b, b + h), for ξ > 0 set Q̃ξ = (a − ξh, a + h) × (b − ξh, b + h) and
Q−

ξ = (a − ξh, a) × (b − ξh, b) (see Figure 1). Let Q− = Q−
1 . Denote

fQ = 1
|Q|

∫
Q

f . Let `Q be the side length of Q. For a measurable set E,

let w(E) =
∫

E
w.

h

Q h Q

ξh

h

h
ξh

Q−
ξ

ξh

ξh

Q̃ξ

Figure 1. Q̃ξ and Q−
ξ .
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As we mentioned in the Introduction, the proof of Theorem 1.5 con-
tains some variants of ideas used in proving Theorem 1.2. The following
lemma represents an analogue of Lemma 2.1.

Lemma 3.1. There exists a constant c > 0 such that for any weight w
and for any square Q,∫

Q

w1+δ ≤ c
δ

ξ2

∫
eQξ

(M+w)1+δ + |Q|(wQ)1+δ (δ > 0, 0 < ξ ≤ 1).

Proof. By Stein’s estimate [23], for λ > wQ,∫
{x∈Q:w(x)>λ}

w(x)dx ≤ 4λ|{x ∈ Q : M∆
Q w(x) > λ}|,

where M∆
Q is the dyadic maximal function restricted to a square Q.

From this, by Fubini’s theorem we have,∫
{x∈Q:w(x)>wQ}

w1+δdx = δ

∫ ∞

wQ

λδ−1

∫
{x∈Q:w(x)>λ}

w(x)dxdλ

≤ 4δ

∫ ∞

wQ

λδ|{x ∈ Q : M∆
Q w(x) > λ}|dλ.(3.1)

Let us show now that for λ > wQ and 0 < ξ ≤ 1,

(3.2) |{x ∈ Q : M∆
Q w(x) > λ}| ≤ c

ξ2
|{x ∈ Q̃ξ : M+w(x) > λ/4}|.

We have that {x ∈ Q : M∆
Q w(x) > λ} = ∪jQj, where wQj

> λ.

For any point x ∈ (Qj)
−
ξ there exists a square Q′

j containing Qj with
|Q′

j| ≤ 4|Qj|, and such that x is the lower left corner of Q′
j. It follows

from this that wQ′
j
≥ 1

4
wQj

> λ
4
. Therefore, M+w(x) > λ

4
for all

x ∈ (Qj)
−
ξ . Next, we note that Qj ⊂ (1+ 2

ξ
)(Qj)

−
ξ . Applying the Vitali

covering lemma (see, e.g., [2, p. 118]) to the family {(1 + 2
ξ
)(Qj)

−
ξ } we

get pairwise disjoint squares (1 + 2
ξ
)(Qi)

−
ξ , i = 1, . . . , k such that∣∣∣ ⋃

j

Qj

∣∣∣ ≤
∣∣∣ ⋃

j

(
1 +

2

ξ

)
(Qj)

−
ξ

∣∣∣
≤ 16

k∑
i=1

|
(
1 +

2

ξ

)
(Qi)

−
ξ | = 16

(
1 +

2

ξ

)2
k∑

i=1

|(Qi)
−
ξ |.(3.3)

Next we clearly have that the squares (Qi)
−
ξ , i = 1, . . . , k are also pair-

wise disjoint, and ∪k
i=1(Qi)

−
ξ ⊂ {x ∈ Q̃ξ : M+w(x) > λ/4}. From this

and from (3.3) we get (3.2).
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Applying (3.1) and (3.2) gives∫
{x∈Q:w(x)>wQ}

w1+δdx ≤ c
δ

ξ2

∫
eQξ

(M+w)1+δdx,

from which the lemma follows easily. �

The next lemma will be an important ingredient in proving of the
subsequent statement.

Lemma 3.2. Let F be the convex hull of Q−
ξ ∪Q, ξ ≥ 1 (see Figure 2),

and let w ∈ A+
p . Then

w(F ) ≤ cw(Q),

where the constant c depends only on ξ, p and w.

.
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....................
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....................
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Q

Q−
ξ

F

Figure 2. Convex hull

Proof. When ξ = 1/4 this was proved by F.J. Mart́ın-Reyes [15]. In
general case the proof is similar but we give it for the sake of complete-
ness.

We observe first that for any square Q,

(3.4) w(Q−
ξ ) ≤ cw(Q).

Indeed, note that Q ⊂ (Q−
ξ )+. Therefore, setting σ = w−1/(p−1) and

applying the A+
p condition along with Hölder’s inequality, we get

w(Q−
ξ )σ

(
(Q−

ξ )+
)p−1 ≤ cξp|Q|p ≤ cξpw(Q)σ

(
(Q−

ξ )+
)p−1

,

which proves (3.4).
Next we have that F \ (Q−

ξ ∪Q) is the union of two triangles T1∪T2.
In view of (3.4), it remains to show that w(Ti) ≤ cw(Q), i = 1, 2. By
symmetry, it suffices to consider the case i = 1.
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Let Q = (a, a + h) × (b, b + h). Then it is easy to see that T1 is
covered (up to a set of measure zero) by ∪∞j=0Qj, where

Qj =
(
a− ξh

2j
, a +

h

2j+1

)
×

(
b + h− (1 + ξ)h

2j
, b + h− h

2j+1

)
.

Next, Qj = (Pj)
−
2ξ+1, where

Pj =
(
a +

h

2j+1
, a +

h

2j

)
×

(
b + h− h

2j+1
, b + h

)
.

Clearly, ∪∞j=0Pj ⊂ Q and Pj are pairwise disjoint. Hence, by (3.4),

w(T1) ≤
∞∑

j=0

w(Qj) ≤ c
∞∑

j=0

w(Pj) ≤ cw(Q).

The proof is complete. �

The following lemma is a key part of our proof.

Lemma 3.3. Let w ∈ A+
p . Then

w{x : N+
r f(x) > λ} ≤ cw{x : N+

1/3f(x) > λ/3} (0 < r < 1/4, λ > 0),

where the constant c depends only on r and w.

Proof. Set Eλ = {x : N+
r f(x) > λ}, and let x ∈ Eλ. Then there exists

h > 0 such that fQr
x,h

> λ. Let i = i(r) be the smallest natural number

for which 2i ≥ 4/r. We divide Qr
x,h into 4i equal squares. Then there

exists at least one of them (denote it by Rx) such that fRx > λ.
Consider now the square Px = (R−

x )− (see Figure 3). For any y ∈ Px

there exists a square Q̄ such that y is the left lower corner of Q̄, Rx ⊂
Q̄

1/3
y,`Q̄

and |Q̄| ≤ 9|Rx|. Then f
Q̄

1/3
y,`Q̄

≥ (4/9)fRx > 4λ/9. Therefore, for

any y ∈ Px we have N+
1/3f(y) > 4λ/9.
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It is easy to see that there exists a square P ′
x (see Figure 4) and such

that

(i) the right upper corner of P ′
x coincides with the left lower corner

of Px;
(ii) x ∈ αP ′

x, where α = α(r) < 1;
(iii) `P ′

x
≤ β`Px , where β = β(r) > 1.

Let Fx be the convex hull of P ′
x∪Px. Applying to the family {Fx}x∈Eλ

the Besicovitch covering theorem [8, Ch. 1], we get a sequence {xk}
such that

(1) Eλ ⊂ ∪kFxk
;
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(2)
∑

k χFxk
(x) ≤ c.

Therefore, by Lemma 3.2,

w(Eλ) ≤
∑

k

w(Fxk
) ≤ c

∑
k

w(Pxk
) ≤ cw{x : N+

1/3f(x) > 4λ/9},

which completes the proof. �

Theorem 3.4. Let n = 2. Then M+ : Lp
w → Lp,∞

w if and only if
w ∈ A+

p .

This theorem was proved in [7].

Proof of Theorem 1.5. One can assume that 0 < r < 1/4. It follows
from Lemma 3.1 that

N+
1/3(w

1+δ)(x) ≤ cδN+
r

(
(M+w)1+δ

)
(x) + (N+

1/3w)1+δ(x),

and therefore,

(3.5) N+
1/3(w

1+δ)(x) ≤ c‖w‖1+δ

A−
1

(
δN+

r

(
w1+δ

)
(x) + w1+δ(x)

)
(here A−

1 = A1(Q+)).
Let Rεf(x) =

∑∞
k=0 εk(M+)kf(x). Then ‖Rεf‖A−

1
≤ 1

ε
. Setting

w = Rε(f
1

1+δ ) in (3.5), and denoting Tε,δf = Rε(f
1

1+δ )1+δ, we get

N+
1/3(Tε,δf)(x) ≤ c

ε1+δ

(
δN+

r (Tε,δf)(x) + Tε,δf(x)
)
.

From this and from Lemma 3.3,

w{x : N+
r (Tε,δf)(x) > λ} ≤ c1w

{
x : N+

r (Tε,δf)(x) >
ε1+δλ

6c2δ

}
+ c1w

{
x : Tε,δf(x) >

ε1+δλ

6c2

}
.(3.6)

Assume now that f ∈ L∞ ∩ Lp
w. Then N+

r (Tε,δf) ∈ L∞, and hence for
any a > 0,

I(a) =

∫ ∞

a

λp−1w{x : N+
r (Tε,δf)(x) > λ}dλ < ∞.

It follows from (3.6) that

I(a) ≤ c1

(6c2δ

ε1+δ

)p

I(aε1+δ/6c2δ) + c(ε, δ)‖Tε,δf‖p
Lp

w
.

Set now δ = γε, where γ is so that c1

(
6c2γ
εγε

)p

≤ 1/2. Then

I(a) ≤ 2c(ε, γε)‖Tε,γεf‖p
Lp

w
.
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Next we note that

‖Tε,γεf‖Lp
w
≤

( ∞∑
k=0

(ε‖M+‖
L

p(1+γε)
w

)k
)1+γε

‖f‖Lp
w
.

It follows from Theorem 3.4 and from the Marcinkiewicz interpolation
theorem that

‖M+‖
L

p(1+γε)
w

≤ c

(γε)1/p
.

Taking ε so that cε1−1/p/γ1/p < 1, and combining the previous esti-
mates, we obtain

I(a) ≤ c‖f‖p
Lp

w
.

Letting a → 0, and using that |f | ≤ Tε,δf , we get

‖N+
r f‖Lp

w
≤ c‖f‖Lp

w
.

Finally we note that the restriction f ∈ L∞ is easily removed by the
Fatou convergence theorem. �

4. Some applications of Theorem 1.2

4.1. Maximal characterization of the Ap condition. Let

Mwf(x) = sup
Q3x

1

w(Q)

∫
Q

|f(y)|w(y)dy.

In the Introduction we have observed that Muckenhoupt’s theorem
follows easily from Corollary 1.3. The argument given shows that a
weight w satisfies the Ap condition iff w is doubling (i.e., there exists
c > 0 such that w(2Q) ≤ cw(Q) for any Q) and

(4.1) Mf(x)p ≤ cMw(|f |p)(x).

Here we notice that the Ap condition can be fully characterized in terms
of (4.1) only.

Proposition 4.1. Let w be a weight. Then w satisfies the Ap condition
iff inequality (4.1) holds for any f ∈ L1

loc(Rn) and for all x ∈ Rn.

Remark 4.2. The fact that (4.1) follows from the Ap condition is well-
known [4]. However, we have never seen in the literature the converse
statement.

Proof of Proposition 4.1. In the one-dimensional case the proof is im-
mediate since the weighted maximal operator Mw is always of weak
type (1, 1) with respect to w [22], and therefore (4.1) implies the weak
type (p, p) of M . It remains to apply Corollary 1.3. In the case n ≥ 2
we only need to show that (4.1) implies the doubling property of w.
Then the same arguments work.
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We shall use the notation from Section 3 with an obvious general-
ization to any dimension. First, we remark that for any cube Q,

(4.2) c1w(Q−
ξ ) ≤ w(Q) ≤ c2w(Q−

ξ ) (ξ > 0).

Indeed, let xQ be the “upper right” corner of Q. Then it is easy
to see that with f = χQ−

ξ
we have Mw(f)(xQ) ≤ w(Q−

ξ )/w(Q), and

M(f)(xQ) ≥ c. From this and from (4.1) we get the right-hand side
of (4.2); the left-hand side can be obtained in a similar way.

Next, observing that Q−
1/2 ⊂ Q−, and combining inequalities in (4.2),

we get

w(2Q) ≤ cw((2Q)−) ≤ cw(Q−
1/2) ≤ cw(Q−) ≤ cw(Q),

which completes the proof. �

4.2. On the property Ap(B) ⇒ Ap−ε(B). Let B be a Buseman-Feller
basis (BF-basis). This means that if B ∈ B and x ∈ B, then B ∈ B(x).
Replacing in the definitions of Ap and Mw cubes by sets B ∈ B we get
the Ap(B) condition and the maximal operator MB,w. It is easy to see
that the Ap(B) condition is necessary for MB to be bounded on Lp

w.
Next, it was shown by B. Jawerth [9] that if

(4.3) Ap(B) ⇒ MB,w : Lr
w → Lr

w (r > 1),

then MB is bounded on Lp
w. Therefore, by (ii) ⇒ (iii) of Theorem 1.2 we

have that if B satisfies Stein’s property and (4.3) holds, then Ap(B) ⇒
Ap−ε(B).

Consider, for example, the Cordoba basis RΦ, where RΦ(x) con-
sists of all rectangles in Rn containing x with dimensions s1 × · · · ×
sn−1 × Φ(s1, . . . , sn−1). Here Φ is a nonnegative continuous function,
monotone in each variable and satisfying

Φ(s1, . . . , sj−1, 0, sj+1, . . . , sn−1) = 0 (1 ≤ j ≤ n− 1),

and Φ(s1, . . . , sn−1) ≈ Φ(2s1, . . . , 2sn−1). Clearly, RΦ is a BF-basis.
Next, using properties of Φ, it can be easily shown that RΦ satisfies
Stein’s property (it is enough to consider a “dyadic grid” with respect
to a given rectangle R and then use the same argument as in [23]).
Finally, (4.3) for B = RΦ was proved in [10]. Therefore, we have that
Ap(RΦ) ⇒ Ap−ε(RΦ). In the case n = 3 and Φ(s, t) = st this result is
contained in [6].

4.3. Lorentz-Shimogaki Theorem. Given a measurable function f ,
the local maximal function mλf is defined by

mλf(x) = sup
Q3x

(fχQ)∗(λ|Q|) (0 < λ < 1),
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where f ∗ denotes the non-increasing rearrangement of f .
In a recent paper [13], the authors proved that the maximal opera-

tor M is bounded on a quasi-Banach function space X iff

αX ≡ lim
λ→0

log ‖mλ‖X

log 1
λ

< 1.

This result is a generalization of the classical Lorentz-Shimogaki the-
orem [2, p. 154], since it is shown in [13] that in the case when X is
rearrangement-invariant the index αX coincides with the upper Boyd
index ᾱX .

As in the classical case, the part showing that the boundedness of M
implies αX < 1 is more complicated. Among other ingredients, the
proof in [13] was based on the theory of submultiplicative functions.
Here we remark that this part follows immediately from Theorem 1.2.
Indeed, by Chebyshev’s inequality,

(fχQ)∗(λ|Q|) = (|f |rχQ)∗(λ|Q|)1/r ≤ (1/λ)1/r
( 1

|Q|

∫
Q

|f |r
)1/r

.

From this and from (ii) ⇒ (iii) of Theorem 1.2 we get ‖mλ‖X ≤
c(1/λ)1/r, and therefore αX ≤ 1/r for some r > 1.

4.4. Ariño-Muckenhoupt Theorem. Given a non-negative function
w on (0,∞), the Lorentz space Λp(w) consists of all measurable f on Rn

for which

‖f‖Λp(w) ≡
( ∫ ∞

0

f ∗(t)pw(t)dt
)1/p

< ∞.

In [1], M.A. Ariño and B. Muckenhoupt proved that M is bounded
on Λp(w), 1 ≤ p < ∞, iff w satisfies the following Bp condition:∫ ∞

t

w(τ)

τ p
dτ ≤ c

tp

∫ t

0

w(τ)dτ (t > 0).

Note that (Mf)∗(t) � f ∗∗(t) = 1
t

∫ t

0
f ∗(τ)dτ [2, p. 122], and hence the

boundedness of M on Λp(w) means that

(4.4) ‖f ∗∗‖Lp
w
≤ c‖f ∗‖Lp

w
.

The key ingredient of the proof in [1] was the property Bp ⇒ Bp−ε.
Later, C.J. Neugebauer [18] found a direct and simpler proof of (4.4);
the property Bp ⇒ Bp−ε was then deduced as a corollary.

Here we notice that exactly as in the case of Ap weights, (ii) ⇒ (iii)
of Theorem 1.2 yields Bp ⇒ Bp−ε. In order to apply (ii) ⇒ (iii) we
only should mention the well-known fact saying that if M is bounded
on Λp(w), then Λp(w) is a Banach space (because the operator f → f ∗∗

is subadditive [2, p. 53]).
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For the sake of completeness we outline here a different elementary
proof of the boundedness of M on Λp(w). Let Hϕ(t) = 1

t

∫ t

0
ϕ(τ)dτ.

Then the Bp condition yields∫ ∞

0

(Hϕ)p(t)w(t)dt =

∫ ∞

0

(tHϕ)p(t)′
∫ ∞

t

w(τ)

τ p
dτdt

≤ c

∫ ∞

0

(tHϕ)p(t)′
1

tp

∫ t

0

w(τ)dτdt

= cp

∫ ∞

0

( ∫ ∞

t

(Hϕ)p−1(τ)
ϕ(τ)

τ
dτ

)
w(t)dt.(4.5)

Let ϕ(t) = f ∗(t)− f ∗(2t). Then∫ ∞

t

(Hϕ)p−1(τ)
ϕ(τ)

τ
dτ ≤ f ∗∗(t)p−1

∫ ∞

t

f ∗(τ)− f ∗(2τ)

τ
dτ

≤ f ∗∗(t)p−1f ∗(t),

and applying (4.5) gives∫ ∞

0

(
f ∗∗(t)− f ∗∗(2t)

)p
w(t)dt ≤ c

∫ ∞

0

f ∗∗(t)p−1f ∗(t)w(t)dt.

Hence, using that f ∗∗(t)− f ∗(t) ≤ 2(f ∗∗(2t)− f ∗∗(t)), we get

‖f ∗∗‖Lp
w
≤ ‖f ∗∗ − f ∗‖Lp

w
+ ‖f ∗‖Lp

w
≤ c

( ∫ ∞

0

f ∗∗(t)p−1f ∗(t)w(t)dt
)1/p

From this and Hölder’s inequality we obtain (4.4).
We refer to a recent work [3] for numerous extensions and variants

of the Ariño-Muckenhoupt theorem.

References

[1] M.A. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz
spaces and Hardy’s inequality with weights for nonincreasing functions, Trans.
Amer. Math. Soc. 320 (1990), no. 2, 727–735.

[2] C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, New
York, 1988.

[3] M.J. Carro, J.A. Raposo and J. Soria, Recent developments in the theory
of Lorentz spaces and weighted inequalities, Memoirs Amer. Math. Soc. 187
(2007).

[4] R.R. Coifman and C. Fefferman, Weighted norm inequalities for maximal func-
tions and singular integrals, Studia Math. 51 (1974), 241–250.

[5] J. Duoandikoetxea, Fourier Analysis, Grad. Studies Math. 29, Amer. Math.
Soc., Providence, 2000.

[6] R. Fefferman, Some weighted norm inequalities for Cordoba’s maximal func-
tion, Amer. J. Math. 106 (1984), 1261–1264.



MAXIMAL OPERATORS 17

[7] L. Forzani, F.J. Mart́ın-Reyes and S. Ombrosi, Weighted inequalities for
the two-dimensional one-sided Hardy-Littlewood maximal function, preprint.
Available at http://webpersonal.uma.es/˜MARTIN REYES/preprints.htm

[8] M. de Guzman, Differentiation of integrals in Rn, Lecture Notes in Math., 481,
Springer-Verlag 1975.

[9] B. Jawerth, Weighted inequalities for maximal operators: Linearization, local-
ization and factorization, Amer. J. Math. 108 (1986), 361–414.

[10] B. Jawerth and A. Torchinsky, The strong maximal function with respect to
measures, Studia Math. 80 (1984), 261–285.

[11] N.J. Kalton, N.T. Peck and J.W. Roberts, An F-space sampler, London Math-
ematical Society Lecture Note Series, 89, Cambridge University Press, 1984.
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