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Abstract. In this note we introduce a dyadic one-sided maximal function

defined as M+,df(x) = supQ dyadic:x∈Q
1
|Q|

∫
Q+ |f | , where Q+ is a certain

cube associated with the dyadic cube Q and f ∈ L1
loc (Rn). We characterize

the pair of weights (w, v) for which the maximal operator M+,d applies Lp (v)

into weak-Lp (w) for 1 ≤ p < ∞.

1. Introduction, notation and main results

In [10] E. Sawyer introduced the class of weights A+
p , which characterizes the

pair of weights (w, v) such that the one-sided Hardy-Littlewood maximal operator
apply Lp (v) into weak-Lp (w). These classes of weights and their associated theory
have been the subject of much study. Different proofs of Sawyer´s results and
more general extensions are given in the papers of F. J. Mart́ın-Reyes, Ortega-
Salvador and A. de la Torre [6], [4] and [5]. In [1] H. Aimar, L. Forzani and F.
J. Mart́ın-Reyes proved the existence of one-sided singular integral operators, and
L. de Rosa and C. Segovia have developed great part of the theory of one-sided
weighted Hardy spaces (see [8] and [9]). However, as far as the author knows, the
theory of one-sided weights has been developed only in R.

The results in this note try to give a first step to overcome that limitation.
We will define a dyadic one-sided maximal function in Rn and we characterize the
pair of weights (w, v) such that the operator associated with this maximal function
applies Lp (v) into weak-Lp (w) (Theorem 1.2 below).

If I = [a, b) is a bounded interval we denote I+ = [b, 2b−a) and I− = [2a− b, a).
If Q = I1 × I2 × ...× In is a cube in Rn, we denote Q+ = I+

1 × I+
2 × ...× I+

n , and
Q− = I−1 × I−2 × ...× I−n .

Given f ∈ L1
loc (Rn), we define the dyadic one-sided maximal function M+,df(x)

as

M+,df(x) = sup
Q dyadic:x∈Q

1
|Q|

∫
Q+

|f | ,

In a similar way M−,df(x) = supQ dyadic:x∈Q
1
|Q|
∫

Q−
|f | . In dimension one, this

maximal function and, more generally, dyadic one-sided fractional maximal func-
tions were defined in [5].

Let x ∈ Rn, x = (x1, x2, ..., xn), and let h be a positive real number. We denote
Qx,h = [x1, x1+h)×[x2, x2+h)×...×[xn, xn+h), Qx,h− = [x1−h, x1)×[x2−h, x2)×
...× [xn−h, xn), and Q

1
2
x,h = [x1 + h

2 , x1 +h)× [x2 + h
2 , x2 +h)× ...× [xn + h

2 , xn +h).
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With this notation, we define the following maximal functions

M+f(x) = sup
h>0

1
|Qx,h|

∫
Qx,h

|f | , M−f(x) = sup
h>0

1∣∣Qx,h−
∣∣ ∫

Qx,h−

|f | , and

N+f(x) = sup
h>0

1∣∣∣Q 1
2
x,h

∣∣∣
∫

Q
1
2
x,h

|f | ,

In dimension n = 1, the maximal functions M+,df (x), N+f(x), and M+f (x)
are pointwise equivalents (see [5]), this fact is not true if n > 1.

Let Q = [a1, b1)× [a2, b2)× ...× [an, bn), with bi− ai = h, and let s be a positive
real number. We denote (Q)s,+ = [a1, a1 + sh)× [a2, a2 + sh)× ...× [an, an + sh),
and (Q)s,− = [b1 − sh, b1) × [b2 − sh, b2) × ... × [bn − sh, bn). We observe that∣∣∣(Q)s,+

∣∣∣ = ∣∣∣(Q)s,−
∣∣∣ = sn |Q| and Q = (Q)1,+ = (Q)1,−.

Remark 1.1. Let R and Q be cubes such that R+ ⊂ Q+, then R ⊂ (Q)2,+.

As usual, a weight w(x) is a measurable and non-negative function. If E ⊂ Rn

is a Lebesgue measurable set, we denote its w-measure by w(E) =
∫

E
w(t)dt.

We will say that a pair of weights (w, v) satisfies the condition A+
p (Rn), (or

(w, v) belongs to the class A+
p (Rn)) p > 1, if there exists a constant C such that

for every cube Q,

(1)
∫

Q

w

(∫
Q+

v−
1

p−1

)p−1

≤ C |Q|p .

The condition A+
1 (Rn) is given by

(2) M−w(x) ≤ Cv(x) a.e.

Interesting gemetric properties of this classes of weights were obtained by Mart́ın-
Reyes in [3]

We define similar classes of weights on dyadic cubes. We will say that a pair of
weights (w, v) satisfies the condition A+,d

p (Rn) (p > 1) if (1) holds for every dyadic
cube Q, and the condition A+,d

1 is given by M−,dw(x) ≤ Cv(x) a. e.
It is clear that if w ≥ 0 is a nondecreasing function in each coordinate, the

pair (w,w) satisfies the condition A+
p (Rn) and therefore A+,d

p (Rn). Thus, these
conditions are weaker than the Muckenhoupt´s condition Ap (Rn) introduced in [7],
which characterizes the pair of weights such that the Hardy-Littlewood maximal
operator applies Lp (v) into weak-Lp (w) .

The next theorem solves a conjecture of A. de la Torre and F. J. Mart́ın-Reyes.

Theorem 1.2. Let w and v be weights on Rn and let 1 ≤ p < ∞. Then, the
following conditions are equivalent:

(a) The pair of weights (w, v) satisfies the condition A+,d
p (Rn)

(b) The maximal operator M+,d is of weak type (p, p) with respect to the pair
(w, v) , that is: there is a constant C such that for every function f ∈
L1

loc (Rn) and every λ > 0

w
(
{x : M+,df(x) > λ}

)
≤ Cλ−p

∫
Rn

|f |p v
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Theorem 1.3. Let w and v be two weights on Rn and let 1 ≤ p < ∞. If (w, v)
belongs to the class A+

p (Rn) then the maximal operator N+f is of weak type (p, p)
with respect to the pair (w, v) .

2. Proof of the results

Let f be an integrable and non-negative function and let λ be a positive real
number. We denote Ωλ = {x : M+,df(x) > λ}. It is not hard to see that there
exists a disjoint collection of dyadic cubes {Qj} such that

∪jQj = Ωλ and for each j, fQ+
j

=
1
|Qj |

∫
Q+

j

f > λ.

In general, the associated collection {Q+
j } is not disjoint. This fact is the main

difficulty that appearing in our proof of Theorem 1.2. However with the next lemma
we overcome that difficulty.

Lemma 2.1. Let 1 ≤ p < ∞. Let (w, v) be a pair of weights satisfying the condition
A+,d

p (Rn) . Let µ be a positive real number. If {Qj}j∈Γµ is a disjoint collection of
dyadic cubes (Γµ denotes the family of indexes j) such that for each j ∈ Γµ , µ <
fQ+

j
≤ 2µ, then ∑

j∈Γµ

w(Qj) ≤
2p+n+2C

µp

∫
∪j∈Γµ Q+

j

|f |p v,

where C is the smallest constant that we can take in the condition A+,d
p (Rn) for

the pair (w, v) .

Proof. For each integer m ≥ 0, we define the subfamily of indexes im in Γµ as

im =
{
j ∈ Γµ : there exist exactly m cubes Q+

s : Q+
j $ Q+

s with s ∈ Γµ

}
,

and we denote
σm = ∪j∈imQ+

j .

Remarks:
(1) It is clear that Γµ = ∪

m≥0im. Furthermore, if j1, j2 belong to im then
Q+

j1
∩Q+

j2
= ∅, and therefore∑

j∈im

∫
Q+

j

f =
∫

σm

f.

(2) If j ∈ im+1 (m ≥ 0) then for each integer k, 0 ≤ k ≤ m, there is only one
jk ∈ ik such that Q+

j ⊂ Q+
jk

. Thus σm+1 ⊂ σm and
∫

σm+1
f ≤

∫
σm

f .
(3) We fix a non negative integer m0 and j0 ∈ im0 . If Q+

j $ Q+
j0

then j ∈ im

where m > m0, and moreover, by remark 1.1 we have that Qj ⊂ (Qj0)
2,+

.

Taking into account the last observation and since the cubes Qj are disjoint we
have

∪m>m0 ∪ j∈im:

Q+
j $Q+

j0

Qj ⊂ (Qj0)
2,+ ,
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and ∑
m>m0

∑
j∈im:

Q+
j $Q+

j0

|Qj | ≤ 2n |Qj0 | .

Therefore, since for every j ∈ Γµ, µ < fQ+
j
≤ 2µ, we get

∑
m>m0

∫
σm∩Q+

j0

f =
∞∑

m>m0

∑
j∈im:

Q+
j $Q+

j0

∫
Q+

j

f

≤ 2µ
∑

m>m0

∑
j∈im:

Q+
j $Q+

j0

|Qj | ≤ 22nµ |Qj0 | < 2n+1

∫
Q+

j0

f.

Thus, we have that
m0+2n+2∑
m=m0+1

∫
σm∩Q+

j0
f < 2n+1

∫
Q+

j0
f. Then, there is a index m,

m0 +1 ≤ m ≤ m0 +2n+2, such that
∫

σm∩Q+
j0

f < 1
2

∫
Q+

j0
f , and since

∫
σm+1∩Q+

j0
f ≤∫

σm∩Q+
j0

f , we have that, if j0 ∈ m0,∫
Q+

j0
∩σm0+2n+2

f <
1
2

∫
Q+

j0

f,

which implies that ∫
Q+

j0
−σm0+2n+2

f >
1
2

∫
Q+

j0

f.

From the last inequality and since µ < fQ+
j0

, we get

(3)
1

|Qj0 |

∫
Q+

j0
−σm0+2n+2

f >
µ

2
.

Now we will estimate
∑

j∈Γµ

w(Qj). We suppose p > 1. From (3), Hölder´s inequality,

and by condition A+,d
p (Rn), we have

∑
j∈Γµ

w(Qj) =
∞∑

m=0

∑
j∈im

w(Qj) ≤
(

2
µ

)p ∞∑
m=0

∑
j∈im

w(Qj)

(
1
|Qj |

∫
Q+

j −σm+2n+2

f

)p

≤
(

2
µ

)p ∞∑
m=0

∑
j∈im

w(Qj)
[
v−

1
p−1

(
Q+

j

)]p−1 1
|Qj |p

∫
Q+

j −σm+2n+2

fpv

≤ 2pC

µp

∞∑
m=0

∫
σm−σm+2n+2

fpv.(4)

( If p = 1 we simply observe that w(Qj)
|Qj |

∫
Q+

j −σm+2n+2
f ≤

∫
Q+

j −σm+2n+2
f M−,dw,

and by condition A+,d
1 (Rn) we can obtain the previous estimate also in this case).
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Then, by (4) and since

∞∑
m=0

∫
σm−σm+2n+2

fpv =
2n+2−1∑

k=0

∞∑
m=0

∫
σ2n+2m+k−σ2n+2(m+1)+k

fpv

=
2n+2−1∑

k=0

∫
σk

fpv ≤ 2n+2

∫
σ0

fpv,

we obtain the lemma.
Proof of Theorem 1.2 . We will prove that (a) ⇒ (b) since (b) ⇒ (a) can

been obtained, with simple changes, by a standard argument (e.g., see pp. 390 in
[2]).

Assume that (w, v) ∈ A+,d
p (Rn).We will estimate

w
(
{x : M+,df(x) > λ}

)
= w (Ωλ) .

Recall that we can write Ωλ = ∪jQj , where fQ+
j

> λ.
For each non-negative integer k, we consider the subfamily of indexes ck ={

j : 2kλ < fQ+
j
≤ 2k+1λ

}
. Then, we can apply Lemma 2.1 to the collection {Qj}j∈ck

,

with µ = 2kλ, getting ∑
j∈ck

w(Qj) ≤
2p+n+2C

(2kλ)p

∫
Rn

fpv.

Therefore

w (Ωλ) =
∑

j

w(Qj) =
∞∑

k=0

∑
j∈ck

w(Qj)

≤
∞∑

k=0

2p+n+2C

(2kλ)p

∫
Rn

fpv =
2p+n8C

λp

∫
Rn

fpv.

which proves that (a) ⇒ (b).

Proof of Theorem 1.3 . Fix an integrable and non-negative function f. We
know that

(5) {x : M+,df(x) > 4−nλ} = ∪jQj ,

where {Qj}j is a disjoint collection of dyadic cubes {Qj}j such that for each j,
fQ+

j
> 4−nλ. We will prove that

(6) {x : N+f(x) > λ} ⊂ ∪j (Qj)
4,−

.

If x ∈{x : N+f(x) > λ} there exists h > 0 such that f
Q

1
2
x,h

> λ. Let k be the

integer such that 2k+1 ≤ h < 2k+2. Then, there exist at most 4n dyadic cubes R

such that R ∩ Q
1
2
x,h 6= ∅ and |R| = 2kn, and therefore one of them satisfies that∫

R
f ≥ 4−n

∫
Qr

x,h
f . Then, since |R| = 2kn ≤

∣∣∣Q 1
2
x,h

∣∣∣, we have that

1
|R|

∫
R

f ≥ 4−n

|R|

∫
Qr

x,h

f ≥ 4−n∣∣∣Q 1
2
x,h

∣∣∣
∫

Q
1
2
x,h

f > 4−nλ,
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and therefore the dyadic cube R− ⊂{x : M+,df(x) > 4−nλ}. Thus there exists a

maximal dyadic cube Qj in the collection in (5) such that R− ⊂ Qj , thus (R−)4,− ⊂
(Qj)

4,− and since x ∈ (R−)4,− we obtain (6) .
Now, by condition A+

p (Rn) , we have that∫
(Qj)

4,−
w

(∫
(Q+

j )4,+
v−

1
p−1

)p−1

≤ C |Qj |p , if p > 1, and

1
|Qj |

∫
(Qj)

4,−
w ≤ C M−w(x) ≤ Cv(x) for a.e x ∈ Q+

j , if p = 1.

Thus, arguing as in the proof of Lemma 2.1 and taking into account the last in-
equalities, we can prove that∑

j:2k−2nλ<f
Q

+
j
≤2k−2n+1λ

w
(
(Qj)

4,−
)
≤ C

(2kλ)p

∫
Rn

|f |p v.

Then, following the reasoning as in the proof of Theorem 1.2 we can obtain the
theorem.

Final Remark
We have already observed that if n > 1 the maximal functions N+f (x) and

M+f (x) are not pointwise equivalents. However, we believe that it is possible to
prove that if the pair of weights (w, v) satisfies the condition A+

p (Rn) then the

maximal operator M+ is of weak type (p, p) with respect to (w, v).
I would like to thank the referee and P. Panzone for their helpful comments.
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