

FIG. 16.—HIGH-GRADE TYPES OF HORNFELS POOR IN SILICA, from the aureole of the Càrn Chois diorite, near Comrie, Perthshire; $\times 23$.

A. Pleonaste-Orthoclase-Cordierite Hornfels. The nearly opaque octahedra are of a spinel near pleonaste; the clear crystals showing cleavage are of orthoclase; the rest is a granular aggregate of cordierite.

B. Corundum-Cordierite Hornfels. The conspicuous crystals showing in relief are of corundum; the opaque mineral is pleonaste; and the other constituents are alkali-felspars and cordierite. This is the rock analysed by Tilley, *Quart. Journ. Geol. Soc.*, vol. lxxx (1924), p. 46.

FIG. 15.—SILLIMANITE-CORDIERITE-GNEISS, M'Phatleles Location, Northern Transvaal; $\times 23$.

From the aureole of the Bushveld plutonic complex (Hall, *Tsch. Min. Pet. Mitt.*, vol. xxvii (1909), p. 135). The sillimanite, in closely packed bundles of fine needles, is forming at the expense of the biotite. Cordierite, enclosing quartz-granules, is conspicuous (over-emphasized in the drawing). Other constituents of the rock are orthoclase, quartz, some andalusite and muscovite, and minute zircons, causing dark haloes in the biotite.

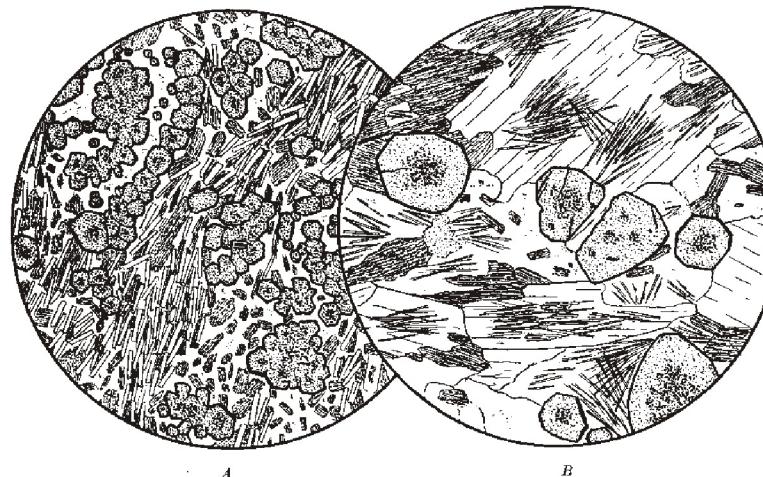


FIG. 17.—HIGHLY METAMORPHOSED ARGILLACEOUS SEDIMENTS of Silurian age bordering the Cairnsmore of Fleet granite at New Galloway; $\times 25$.

A. Garnet-Gneiss. This has been a rather siliceous shale, and contains abundant quartz. The other chief constituents are garnet, muscovite, and biotite.

B. Sillimanite-Gneiss: a very coarse-grained rock consisting of garnet, two micas, quartz, and some felspar, with abundant needles of sillimanite, mostly enclosed in the muscovite.